ETHzurich

DITET

Localizing mobile nodes in a relative

coordinate system

Semester Thesis

Andreas Biri
abiri@student.ethz.ch

Information Security Group
Institute of Information Security

ETH Zurich

Supervisors:
Mridula Singh
Prof. Dr. Srdjan Capkun

June 21, 2017

mailto:abiri@student.ethz.ch

Acknowledgment

I would like to express my gratitude to Mridula Singh for her supervision and guid-
ance during this thesis. Her dedication and continuing support in the meetings were
inspiring and resulted in countless interesting and constructive discussions. Without
her invaluable ideas and insightful inputs, this project would not be where it is now.
I hope that the present work will prove to be of great value for her future research.
Furthermore, I would like to thank Prof. Dr. Srdjan Capkun for enabling me to con-
duct this thesis in his group and therefore allowing me to tackle such a fascinating
topic.

Abstract

This thesis presents an infrastructure-less, scalable, real-time positioning system for
mobile entities. The system is designed based on multidimensional scaling (MDS)
and multilateration. One of the key features is that there is no need for fixed
anchor nodes. We achieve this by leveraging multidimensional scaling to generate a
relative 3D coordinate system, after which all nodes can be mobile. The system can
support real-time position estimation of multiple mobile nodes with high accuracy.
We evaluated systems using both simulations and a prototype implementation.The
implementation achieves an accuracy of 30 cm and supports up to 40 moving nodes
updating their position every second. This thesis is a first step towards evaluating
the feasibility of building an infrastructure-less secure positioning system.

il

Contents

[Acknowledgment|
[Abstract]
(I _Introduction|
1.1 Motivation| .
1.2 Wireless sensor networks| .
1.3 Related works
1.4 Goals

System design|

2.1
2.2
2.2.1
2.2.2
2.2.3
2.3
231
2.3.2
24
2.5
2.6

Scientific model|.

Design considerations| .

System architecture

MAC protocoll .

Algorithms| .

Means & methods| .

Hardware

Applied algorithms|.

System overview

Contention access period| .

Contention-free period|.

il

ii

W

Lo = o o ot G

oo

11
13
15

CONTENTS

[3 Implementation|

3.1 Embedded System programming .
3.1.1 Structure
3.1.2 Mathematical calculations|.
3.2 Visualisation
3.3 Verification| .
4 Evaluation|
4.1 Error behaviour of the algorithms
4.2 Theoretical analysis
4.3 Measurements| .
4.4 General lessons learned
5 Conclusion & Outlook]
5.1 Conclusion| .
5.2 Future work.
APDP a

[Bibliography|

v

18
18
18
22
22
24

26
26
30
33
36

38
38
38

40

42

Chapter 1

Introduction

1.1 Motivation

“If you think that the internet has changed your life, think again. The
IoT is about to change it all over again!” — Brendan O’Brien [1]

Over the last decade, an ever-growing number of smart, interconnected devices has
emerged and has been put to use in fields ranging from scientific research through
industrial systems to home entertainment. Recent technological breakthroughts in
embedded computing, wireless communication and sensor technology allowed for
the creation of large sensor networks with very low cost and power consumption. In
clusters containing only a few up to networks interconnecting thousands of nodes [2],
devices are placed in monitoring areas and cooperate in conducting measurements
and aggregating information for processing. In order to do so, it is often essential
to associate a position to the data for comparison and integration into an existing
data set. Only with this knowledge, the event can be localized, mapped and tracked
over time.

In recent years, various new sensor network concepts such as the Internet of Things
(IoT) awoke the interest of the general public. Companies like Google started build-
ing dedicated operating systems and giants like Amazon and Verizon are contending
for startups in the field to position themselves for the expected coming surge in
applications and customers [3, 4]. With growing activity, developing appropriate
hardware and specifically designed algorithms for such devices constantly gains in
importance.

As the goal of sensor networks is to optain a considerable amount of different mea-
surements and often require devices to be disposable, most such systems are inexpen-
sive by design and are only connected over a single, relatively basic link. Ideally, one
would like to use the same communication channel in another dual role for position
estimation by doing distance measurements instead of having multiple separated
wireless channels. Therefore, a system is required which can produce accurate local-
ization of possibly mobile nodes without requiring complex and expensive hardware.

1.2. WIRELESS SENSOR NETWORKS 2

1.2 Wireless sensor networks

The term wireless sensor networks (WSN) is used to describe a set of wireless sensor
nodes which collaborate to perform a given task by fusing individual measurements
into higher-level information. Usually, WSN are self organizing networks consisting
of heterogeneous, randomly placed devices. In most cases, the nodes consist of three
components: a sensing subsystem used for data acquisition, a wireless communica-
tion subsystem for data transmission as well as an optional processing subsystem
for local data processing [5), [6].

Wireless sensor networks are considered to be "one of the four large high-tech indus-
tries in the future" [7]. Their application spectrum covers area monitoring, environ-
mental sensing (such as forest fireproofing, air pollusion measurements and natural
disaster prevention), healthcare monitoring (e.g. smart home), industrial process
monitoring and control, military surveillance and traffic control [8] [9} [10].

From the single nodes, data is transferred to so-called sink nodes (base stations)
through a multi-hop paradigm [8], where the data is aggregated for further processing
(see figure . While an extensive amount of data is necessary for reliable data
analysis, most applications rely on the measurement locations which have to be
known a priori to set the gathered information into context. This information is
then used to solve higher-layer problems such as location-aided routing and data
fusion [9].

Wireless Sensor Network

2]
& 2

1--.._®

@ Target

Sink Node
S

User

Sensor Node

Figure 1.1: Wireless sensor network [11]

One way of providing this information would be to equip every single device with
a GNSS (Global Navigation Satellite System) receiver. However, this solution is
not feasible due to hardware costs which exceed the usual budget (with precise
GNSS modules costing close to 100 dollars [12]) or size and power constraints [§].
Additionally, GPS reception is often strongly restricted or non-existent in urban
areas, especially in indoor locations.

Another option is the precise disposition of mobile nodes by person. Because such
an endeavour would require strict a priori knowledge of the deployment positions
and is not scalable nor adaptive, this might only be applicable to very specific
settings. Furthermore, it directly contradicts one of the core principles of a WSN by
restricting movement and strongly limiting deployability and scale of the network.

For many applications, the absolute (global) position is not required. Therefore, it
suffices to know the displacement of the measurement device in relation to other

1.3. RELATED WORKS 3

devices inside the network. This is especially the case for clusters of networks where
one is only interested in the interactions in-between nodes, such as drone swarms
flying in formation and sensor nodes deployed over a coverage area by air for ge-
ological studies or when using location-aided routing [13]. This fact promotes the
introduction of a relative coordinate system which does not rely on external infras-
tructure.

In case global coordinates are still necessary, they can easily be optained by equip-
ping a dimishingly small fraction of the nodes with GNSS receivers. With only four
such devices, the entire network with possibly thousands of members can be located
and the global coordinates of each one of the nodes calculated [14]. In theory, this
can even be accomplished in post-processing, e.g. after the nodes have been re-
gathered and their last positions are known precisely. This method would even be
realisable without implying any additional hardware costs at all.

1.3 Related works

Localization of WSNs has been studied extensively in the research community. The
main effort herein has been focusing on infrastructure-based or -aided systems such
as anchor-based algorithms, in which a (preferably) small percentage of the nodes
(so-called anchors) are aware of their precise position in advance [14].

However, as mentioned above, for many applications, anchor-free algorithms are suf-
ficient and require less dependencies and complexity. A majority of the publications
for GPS-free systems has been concentrating on the 2D case |15, [16], 17]. However,
an extension of those algorithms for 3-D positioning is difficult and suffers from large
localization errors due to the complexity of environmental factors as well as node
deployment in a further dimension [I8], 24].

For the static case, one of the most promising approaches has been the introduction
of Multidimensional Scaling (MDS) by Shang et al. [19] as MDS-MAP(C) to reduce
localization error. This work has then been improved using patches of relative maps
in the MDS-MAP(P) algorithm and an additional, optional refinement step [20].
In contrast to the former approach, this solution first calculates small local maps
and thereafter aligns and combines them to a coordinate system spanning the entire
network. Stojkoska et al. extended the principle to cluster-based MDS [21] and then
implemented MDS-MAP for 3D WSN [22]. The concept of cluster-based MDS (CB-
MDS) was analysed in 3D by Fan et al. [23]. Using improved heuristics instead of
Dijkstra’s algorithm [8] and a new refinement phase based on Levenberg-Marquardt
(LM), a more robust solution called MHL-M was proposed by Saeed et al. [24].

Cui et al. [I8] recently extended this concept for mobile nodes and applied an
improved MDS algorithm for the tracking of nodes. Whereas localization only esti-
mates the position of static nodes, tracking achieves the continuous localization of
nodes over time [9]. For this purpose, the movement is estimated at each time step
and historic location information is incorporated to increase the accuracy of the algo-
rithm. Such an algorithm needs to be iterative to interconnect multiple independent
measurements and create coherent position estimates. Examples of smoothing algo-

1.4. GOALS 4

rithms include (extended) Kalman filters and particle filtering; due to their strong
reliance on a correct and a priori known system model such as noise distributions
and node movement, these algorithms are not adaptive and only bear small resem-
blance to the real world [18]. Therefore, Cui et al. proposed an algorithm relying on
polynomial data fitting for model-independent and adaptive accuracy improvement.

The algorithm proposed in [I8] requires the computation of the entire distance ma-
trix for each time step, i.e. measuring distances between all nodes for a single
iteration. This method is not well scalable, especially for a small percentage of mov-
ing nodes, and takes too long for practical use in large scale WSN. Furthermore, it
implies that during the measurements for a single step, all nodes are stationary, as
otherwise data consistency is violated. To prevent those shortcomings, we propose
a two stage algorithm: First, a relative coordinate system is created based on the
MDS method, which can be improved by existing methods [18, 23 24]. In a second
stage, only the moving nodes perform ranging and update their position. This can
be achieved using either trilateration or multilateration. Trilateration has already
been deployed successfully for increasing the accuracy of the calculated positions of
MDS [25]. The resulting positions are then enhanced using data fitting algorithms
to provide smooth and accurate tracking results.

1.4 Goals

For this thesis, the goal was to develop a method which is able to calculate a 3D rela-
tive coordinate system for mobile nodes without relying on any anchor nodes or other
infrastructure. The system should be able to give time guarantees to nodes in regard
to position update frequency and allow multiple nodes to be mobile simultaneously.
To our knowledge, there currently exists no other solution for infrastructure-less and
precise localization and tracking using only Time-of-Arrival (ToA) measurements.
In a second step, the algorithm was implemented on pre-existing hardware. The
setup used an Arduino Due with a distance bounding IC by 3DBAccess [26].

The rest of this paper is structured as follows: Chapter 2: System design draws an
overview over the design concepts behind the developed algorithm. This includes
the designed MAC layer as well as the different stages of the protocol. Chapter 3:
Implementation sketches the implemented solution to show the dependencies and
the structure of the C code. Furthermore, additional supporting material written
in Python and Matlab is presented and its usage explained. Chapter 4: Fvaluation
describes how the built system was tested under different cirumstances and quan-
tified. In Chapter 5: Conclusion, we present our findings and show possible future
extensions of this thesis.

Chapter 2

System design

In the following sections, an insight into the considerations behind the project as
well as a detailed description of the two stages involved is shown. The underlying
model and the criteria for devising and building the system are presented and their
consequences analysed. Furthermore, we outline possible variations where one could
extend the presented work by incorporating known algorithms to encrease accuracy
and reduce data fluctuation.

2.1 Scientific model

Any scientific research relies on certain fundamental assumptions to abstract the real
world and define a common basis to work upon. In order to maintain relevancy and
broad applicability to the physical system, those conditions should remain limited.
For this project, we built upon the following scenario:

e We consider a network of wireless devices moving independently in three-
dimensional space without any supporting external infrastructure

e "One world": nodes have bidirectional links to all their neighbours which are
not delimited by physical phenomenons such as shadowing or limited reach

e The nodes are homogeneous, i.e. they possess the same hardware and other
technical characteristics

e Nodes can obtain information about whether they are stationary or moving
(e.g. by using accelerometer data)

e The motion of the nodes is smooth (i.e. differentiable)

e Initially, some of the nodes are deployed simultaneously and remain static for
the first few seconds. Additional nodes might join the network after this time
has elapsed.

For the presented setting, the method should allow nodes to move freely and without
central coordination, gather and maintain knowledge about its current position and
that of surrounding neighbours and evade possible collisions at all times.

2.2. DESIGN CONSIDERATIONS 6

2.2 Design considerations

2.2.1 System architecture

As we are investigating infrastructure-free situations, the computation and local-
ization has to be executed entirely on the nodes themselves. There are multiple
ways to distribute the load between devices; considering the expected performance
mentioned above, we chose a centralized approach with a master-slave relationship.
This structure possesses the following advantages over a de-centralized approach:

e Guaranteed position update intervals enable us to enforce physical collision
prevention for a given maximal velocity while still allowing dynamical adapta-
tion of the number of measurements of an individual node (less moving nodes
permit more rangings per node and an improved accuracy).

e Centralized channel control for certain phases renders selective network as-
sociation possible (which offers the ability to prevent too many nodes from
moving and joining the network).

e The master-slave relationship remains the same for the initial phase (in which
MDS is applied) and the later iterative phase (while the nodes are moving).

e We gain the possibility to easily integrate a new node into the system. The
integration is centrally coordinated by a master, who informs newcomers about
the network state and containing nodes.

e Centralized updates allow detection of vanished or emigrated nodes (master
node can periodically challenge all nodes to reaffirm their positions).

e The centralized control reduces the energy consumptions of the (numerous)
stationary nodes, as they are only required to be active during the Contention
Free Period (CFP) and can remain in standby for the rest of the cycle.

e All known (scalable 3D) algorithms for relative localization rely on beacons or
other centralized algorithms such as MDS for execution; this choice therefore
allows us to implement already known algorithms and test their performance.

e Coordination between multiple piconets/clusters is available, which makes
large-scale communication in the network possible and could be used for im-
proved scalability.

By design, all nodes share the same information. Therefore, even if for various
reasons, a master should not be available anymore, another slave inside the cluster
can immediatelly take over its position and seemlessly continue operations.

As we will see later on, one possible extension is applying CB-MDS, which takes
advantage of clusters to distribute the load over multiple cluster-heads. For a scal-
able solution, this is unavoidable and the extension from this thesis straightforward.
In this case, we would classify the architecture as locally centralized, as nodes only
communicate in a restricted neighbourhood [14].

2.2. DESIGN CONSIDERATIONS 7

2.2.2 MAC protocol

One central aspect in any communication scheme is the selection of a fitting media
access control (MAC) protocol. While multiple nodes compete for the same channel
(as there only exists one in this scenario), data transmission is only successful if at
most one node has exclusive access to the channel at any given time. The fair and
efficient allocation of the channel is a challenging task, especially when the schedule
should be dynamically created and adapted.

As the update frequency of the positions is critical for moving nodes and needs
to be guaranteed to be above a certain frequency, a protocol which ensures that
moving nodes receive regular slots of a certain length is unavoidable and therefore
requires time division multiple access (TDMA). This project features a dynamic
TDMA (D-TDMA) scheme with a Contention Access Period (CAP) (see Section
which allows mobile nodes to compete for the channel and request a slot. After
a contention phase, the centralized controller (master) announces a contention-free
period (CFP) (see Section[2.6), in which nodes which requested a slot in the previous
CAP are scheduled in a TDMA fashion.

A contention-based MAC period is required, as anything more deterministically
(e.g. only a CFP with classical TDMA) would not have allowed the network (which
in practice may consist of thousands of nodes) to scale well when implemented
in WSNs. Therefore, polling or token-passing algorithms were excluded. Other
protocols under consideration for the CAP were:

e CSMA /CA: Not applicable, as the package length is too short for its usage

e CSMA/CD: Not implementable, as the hardware does not allow simultaneous
sensing while transmitting

e ALOHA: Not implementable, as collision detection not available and we are
limited to a single channel (no separate acknowledgments possible)

e MACAW: Implementing Request-to-Send (RTS) and Clear-to-Send (CTS) would
not improve the system’s performance, as the packages sizes used are in the
order of the RT'S/CTS packets themselves

As classical carrier-sensing is not possible with the present hardware, we entirely
rely on feedback from the receiver (in this case the master node) for information
about contention and occured collisions. This knowledge is transferred back to the
slaves by an ACK package directly after reception. If no ACK is received, the node
assumes a collision event and initializes a classical back-off mechanism. This method
also solves other well-known problems such as the "Hidden Node" problem.

In order to keep contention periods (which are expensive in terms of time ressources)
to a minimum, the algorithm allows nodes which already successfully gained channel
access at least once to keep reserving a slot in future rounds. This is accomplished
by including additional information in the position update broadcast (see Section
2.5). Furthermore, by guaranteeing slots to moving nodes, update frequencies can
always be ensured and do not depend on congestion.

2.3. MEANS & METHODS 8

2.2.3 Algorithms

An overview over different localization algorithms has already been given in Sec-
tion [I.3] For this thesis, a combination of multidimensional scaling methods for
the initialization stage and multilateration for the iterative stage has been chosen.
Compared to other systems, the main advantage of MDS localization algorithms is
their utilization of the entire distance information at a single point in time to form
a coherent coordinate system. Therefore, they do not suffer from error propagation
throughout the system. Furthermore, in contrast to similar algorithms, there is no
reliance on a set of reference nodes, whose movement would require the recomputa-
tion of all positions.

For the tracking of mobile nodes and an interconnection of position estimations
over time, a polynomial data fitting strategy [I8] has been selected. Other fre-
quently seen algorithms for 3D range-based tracking are Kalman filters and variants
thereof as well as particle filtering. However, these algorithms typically assume the
presence of a system model (e.g. near-constant velocity models) and specific noise
distributions which are known a priori (e.g. Gaussian distribution) [18]. As the
measurement noise usually increases with the relative distance between nodes, it is
signal-dependent [27]. Therefore, the usual assumption that the noise are i.i.d ad-
ditive Gaussian random variables with identical covariance does not hold anymore.
The present solution is not restricted to such cases.

As an alternative for multilateration, a Mazimum Likelihood Estimation (MLE) can
be implemented. To solve this non-linear equation, algorithms such as Newton-
Raphson iterative method are used [28]. This can be problematic if the method
does not converge to a global minimum and does not offer a fixed or predictable
time consumption necessary for TDMA.

It has been shown that trilateration can be used to improve initial coordinats calcu-
lated by MDS [25]. To our knowledge, this work is the first one which extends this
concept to mobile nodes in a three-dimensional space and utilizes multilateration
for increased accuracy in a large node set.

2.3 Means & methods

2.3.1 Hardware

As a hardware platform for this thesis, we used a chip designed by 3DBAccess [26]. In
combination with an Arduino Due microprocessor board, the 3DB6830B integrated
circuit allows for centimeter-precision ranging over ultra-wideband (UWB). For this,
it employs a two-way ranging method based on Time of Arrival (ToA) measurements
to calculate distances in-between multiple boards.

The code for this systems has been written for the current MIDAS V2.0 software
release using the programming language C. All interactions with the Arduino OS
are handled over the built-in functions of the MIDAS platform.

2.3. MEANS & METHODS 9

2.3.2 Applied algorithms

Multidimensional Scaling

MDS originates from psychometrics and economics and is used to reflect the simi-
larity of multi-objects. By reducing the dimension, one can visualize the data in a
low-dimensional space and identify the underlying structure in-between objects [7].

Multidimensional scaling can be separated into four steps:

1. Calculate (or estimate, e.g. using iMDS [§]) the Euclidean distances between
any two nodes to create a matrix of squared distances for the entire network.

(; d%z e dle\
d 0 oo d
p=| 2" (2.1)
v dive - 0

2. Find the eigendecomposition of the double centered distance matrix by using
singular value decomposition (SVD) to aquire eigenvalues and eigenvectors of
the system.

1 1
Dy. = =TDT T =Tinwen — —.1.17 2.2
de = 5 : IN|z|N| N (2.2)

Dg. = QAQT = PPT (2.3)

3. Use the decomposition to calculate the new positions in the relative coordinate
system (RCS) by utilizing the three largest eigenvalues and their corresponding
eigenvectors.

P = QAY? (2.4)

4. In an optional step, refine the relative coordinates by means of particle swarm
optimization [I§], least-square minimization [20] or Levenberg-Marquardt (LM)
[24]. This increases the accuracy of the RCS and prevents strong fluctuations.

Trilateration

In order to calculate the global position of an object, any algorithm needs to rely
on already known locations. One of the most common methods to arrive at such an
estimate (which is also used for GPS localization) is called trilateration, in which
the simultaneous distance measurements to exactly three known nodes is utilized
[29]. In the case of error-free ranging, one can express the problem as the process of
finding the intersection point of three spheres:

2.3. MEANS & METHODS 10

(z—21)’+W—n)’+GE-—2) = [
(l‘ — .1'2)2 -+ (y - y2)2 -+ (Z - 22>2 = lg (25)
(z—23)’+ (y—ys)’+ (2 —23)° = 13

After solving the three quadratic equations (2.5)), whereby p; = (z;, i, 2:), @ =
1,2,3 are the position of the three known nodes with IDs ¢ and distance [; to the
node in question, one can directly obtain the position ps; without additional data.

It directly follows that trilateration can also be applied to relative coordinates. The
advantage of this algorithm is its simplicity as well as its low overhead and data
consumption. However, as a position update merely relies on three other nodes and
measurements in real applications are strongly influenced by noise, error propaga-
tion throughout the system can quickly cause deteriorating results and render the
estimates unreliable.

Figure 2.1: Trilateration of node at position p, (adapted from [29])

Multilateration

One way of improving position accuracy and making estimates less error-prone is
by increasing the number of known locations and distance measurements used in
the calculations to decrease the influence of single erroneous data. By extending tri-
lateration and exploiting an additional amount of existing information, the method
should result in more reliable and precise position estimates. Multilateration im-
plements this concept and is not limited to just three known sites like trilateration,
but can incorporate as many positions as provided [30]. Therefore, the operator
can directly influence the precision of the collected data according to his needs and
adjust the balance between update frequency and localization robustness.

There are two major drawbacks in the presented solutions. Due to the nature of the
calculations, a flip ambiguity exists which results in two different position estimates
for each run of the algorithms. Whereas in many cases, the valid solution can easily
be distinguished by a simple judgment criterion such as the requirement for positive

2.4. SYSTEM OVERVIEW 11

z-coordinates, this does not hold for the general case, especially for relative coordi-
nate systems. However, by including an additional ranging measurement, it is still
possible to uniquely distinguish between the candidates in most cases.
Additionally, both trilateration and multilateration rely on the single measurements
to be taken virtually simultaneously (or rather, at the same location). For most
physical systems, this ideal cannot be accomplished without disproportional hard-
ware expenses. In this thesis, the staggered measurement points are of negligible
influence, as their maximal spread in time stays below 10ms for five rangings, during
which an object with a velocity of up to 100 km/h shifts by less than 25cm, which
is below the effective measurement precision of the current hardware of 40cm.

2.4 System overview

We partition the process of building and maintaining a relative coordinate system
(RCS) into two stages. In the first stage, following the model (see Section [2.1]), nodes
are assumed to be temporary stationary and allow for creating a complete descrip-
tion of the entire network at the current time instance. After wake-up and successful
leader election (whereby one node is elected as master), the nodes start gathering
information about their surrounding neighbours. This can be accomplished by im-
plementing the following steps:

1. Perform ranging between neighbours (repeat multiple times and average results
for improved accuracy and outlier reduction) and filter this using e.g. Kalman
filters [31] to create a distance matrix for MDS

2. Send all distances to the master, who acts as cluster head

3. Estimate the non-neighbour distances using a heuristic approach (HA) in
iMDS [8] or an iterative approach [32] instead of using Djikstra or Floyd to
get a complete distance matrix (optional: useful if "one world" assumption is
dropped)

4. Use MDS to get the relative coordinates by applying singular value decompo-
sition (SVD) to the squared distance matrix

5. Improve MDS using particle swarm optimization (PSO) [I8] or Levenberg-
Marquardt (LM) [24](optional)

6. Merge multiple local coordinate systems from different clusters (if any) to one
global coordinate system using D3D-MDS [23]| (optional: useful for improved
scalability and if "one world" assumption is dropped)

Steps 3 and 6 are not included in the current solution, as we fixed the scenario to
a network where all nodes are in communication range with each other. Step 5
would increase the accuracy of the system, but is no integral part of the system and
therefore not yet implemented due to time restrictions of the current thesis.

2.4. SYSTEM OVERVIEW 12

Leader election 1. Create distance 2. Send data to
matrix Master
15t stage [-> —» 4. Apply MDS j

R

Contention-access
period (CAP)

Contention-free
period (CFP)

1. Multilateration
(4. position prediction)

3. Data fitting

Figure 2.2: Visualisation of the two stages of the algorithm

2. Trilateration

2nd stage

In a second stage, the system transitions from stationary relations to a network
containing mobile nodes. As MDS relies on simultaneous distance measurements,
this algorithm is not well suited for uncoherent data and results in poor performance
(see discussion in Section [I.3). This fact advocates the use of lateration algorithms
which only rely on a subset of the distance information and still provide flexibility in
terms of measurement accuracy. Motivated by this consideration, we implemented
the following method:

1. Multilateration with n neighbours to update the node’s position [30], whereby
the parameter n can be determined dynamically by the node itself based on

the number of other mobile nodes and the time allocated by the master for
the CFP (see Section [2.6).

2. Due to numerical instabilities of the algorithm under certain conditions (such
as when all points lie in the same plane), we used trilateration [29] as a back-up
algorithm with reduced accuracy in cases where multilateration should offer
no valid solution.

3. Apply data-fitting over historical data [I8] to connect data points over multiple
rounds. This smoothens the trajectory and increases correlation to the real
positions by diminishing the influence of single rangings and interpolating over
time.

4. Additionally, we exploit those parameters found in step 3 to predict the po-
sition over time. This enables us to accurately estimate the location of any
node even in between own rangings and provides optimal data when providing
distance measurements for other moving nodes. Therefore, we are free to im-

2.5. CONTENTION ACCESS PERIOD 13

pose no restrictions on the amount of stationary nodes, as even moving nodes
can offer precise location data for neighbours doing ranging.

As the nodes are only assumed to be stationary at the beginning, the first stage is
just traversed once. The second one on the other hand is constantly cycled through;
one completion is referred to as one round. At the beginning of each round, nodes
that started moving will request a slot and gain access to the channel if the request
is granted by the central authority, in this case the master (see Section . In a
second phase after the contention-access period, the master will transmit a schedule
in which the access sequence of the moving nodes that are granted access the channel
is defined (see Section [2.6)). One after the other, the moving nodes will now perform
ranging with other nodes and update their positions. When all scheduled nodes are
done, the round is over and a next one can be initiated by the master.

The entire system was specifically designed to have maximal modularity and allows
one to adapt and extend the project gradually. This is crutial for having a flexible
structure which can be optimized and adjusted to current hardware possibilities.

2.5 Contention access period

As described in Section [2.2.2] dynamic TDMA for the ranging uses a contention-free
phase as well as a preceding period where moving nodes can contend for the channel.
This allows dynamic slot allocations (compared to classical TDMA where a fixed
schedule exist and is decided at the start), but still guarantees slots to the moving
nodes which are already scheduled and therefore combines the advantages of both
contention-based and contention-free protocols.

The beginning of each contention access period (CAP) is announced by the master
who serves as a central scheduler. All nodes receive the same Master Information
Frame (MIF) (see Appendix) which signals the start and contains information about
its duration. The time allocated to the CAP is decided dynamically by the mas-
ter based on the previous round: If many nodes tried to access the channel (and
therefore, some might not have actually received a slot due to congestion), the prob-
ablility that a large number of nodes will retry this round is high and the CAP will
be extended. However, if only few or even no mobile nodes contested the channel,
we can limit this time to allow for more rangings during the following CFP (see
next section). In order to ensure a certain CAP time and assure a minimum update
frequency under large loads, the CAP has fixed minimal and maximal lengths which
can not be exceeded.

After the nodes have received a MIF frame, they start an initial back-off to prevent
immediate congestion at the start of the frame (see figure . Each node now
decreases its backoff counter while the channel is idle. If the channel is already used
by other nodes, this countdown will temporary pause (signaled by the dotted lign in
figure ; this prevents an increased probability of congestion after a transmission,
as multiple nodes might have finished their backoff during the transmission of other
nodes.

2.5. CONTENTION ACCESS PERIOD 14

[Slavel] [Slave2] [Slave3]

send MIF o >
= H H H
slot request .
request e | T >
slot red! R o
............ »)
Collision
slot request
M
Slave3 |
receives | L. ____
slot [T e
T A ________fesponse
slot request [N
Slavel
receives | L..._.__
slot [[Tl >
: slot request —
Slave2 (’/E//’
receives | f--....____ :
el | .- . Broadcast
........... >
[A EE T > ~
i : ' Unicast
. H : >
: >

Figure 2.3: MAC protocol for the contention access phase (CAP)

When the counter reaches zero, the node checks whether the channel is free. This
"collision avoidance" mechanism prevents sending while another node is waiting for
a response from the master; however, it cannot detect immediate ongoing transmis-
sions, as it needs to tap the channel for a certain duration.

If it is taken, it will wait for the transmission to end. Otherwise, it directly tries
to access the channel. After the request is sent, the nodes waits for a fixed time
(determined by the hardware characteristics of the node) until a timeout is reached.
If it received an answer from the master, the master correctly scheduled the node
in the next CFP and no further actions are required. In this case, the node has
finished the CAP and is now waiting for the beginning of the CFP. The master on
the other hand keeps listening on the channel for further requests until the CAP
time has been reached.

2.6. CONTENTION-FREE PERIOD 15

If, however, the node does not receive an ACK, three things might have happened:
e Two nodes tried to access the channel at the same time

e A node tried to access the node at the same time as the master tried to send
its ACK after receiving the packet correctly in the previous slot

e Due to other extern influences (moving objects, interference, etc.) the master
did not receive the packet or the ACK got lost

In all cases, the resulting action will be the same: the node handles the case as a
collision, as the channel is for one of the reasons given above not available at the
moment, and initializes a back-off sequence. This can be seen in the second half of
figure 2.3} in which two nodes independently start backing off after they previously
collided. In order to prevent repeated collisions, the backoff timer is chosen at
random inside an increasingly large backoff window to decrease the chance of further
congestion.

As already mentioned in Section [2.2.2] nodes that gained a slot in a previous round
and are still moving can signal this when sending their updated position in the "LO-
CATION" packet (see Appendix). The master will then automatically reschedule
them without the necessity to use the CAP, which prevents unnecessary conges-
tion and allows for guaranteed position update intervals. Therefore, already moving
nodes have an assured slot as long as they require one.

2.6 Contention-free period

After nodes could apply for a slot during the CAP and had to compete with other
neighbours, the next phase is strictly scheduled to have maximal efficiency. In a
TDMA manner, each scheduled node receives a slot and can do ranging during its
allocated period.

Similar to the CAP, a contention-free period (CFP) is initiated by a Master Control
Frame (MCF), in which length of the entire CFP as well as the number of scheduled
nodes and the entire scheduling is included. After receiving an MCF packet, each
node knows when it is allowed to do ranging. From this point on until the end of
the CFP, the master behaves just as any other ordinary node and has no special
status; just as everyone else, it will be included in the schedule if it is going to do
ranging in this round.

The procedure following a MCF is displayed in figure 2.4l The node which is sched-
uled first will create an additional schedule, in which it describes which nodes are
going to be used for ranging to update its position. Each node will wait for the
ranging schedule and decide whether its participation is required. If not, it will
simply wait for the resulting update of the node’s location. Otherwise, it will start
responding to ranging requests of the scheduled node. Inside a response to a rang-
ing request, it will send its updated position so that the moving node can use the
most-current data for its calculations. If the answering node is also moving, this is

2.6. CONTENTION-FREE PERIOD

Master Slavel Slave2
ID 10.10 ID1.1 1D 2.2

Slave3
1D 3.3

)

send MCF

send Ranging schedule

Y

Y

A .
Y
Verifier: 1.1 -10.10 i :
Prover: 10.10 - 1.1
Verifier: 1.1 - 2.2
>
Ll
Prover:2.2-1.1
Verifier: 1.1 - 3.3
>
>
Prover:3.3-1.1
ey
send updated position — —
Y : Ll
e send Ranging schedule _'
A <
Y -

Verifier: 2.2 - 10.10

Prover: 10.10 - 2.2

Figure 2.4: Contention-free period with ranging of multiple moving nodes

Broadcast

Unicast

\4

A\ 4

16

accomplished by using the data-fitting algorithm and predicting its effective position
based on the results form its own last ranging.
After the ranging schedule has been completed, the node will recalculate its posi-
tion. First, it will create a new estimate by executing the multilateration algorithm.
Afterwards, it feeds this new data into the data-fitting algorithm and find a new
position which fits into a smooth trajectory. As a last step, this new position will

2.6. CONTENTION-FREE PERIOD 17

then be sent to all other nodes to update their internal tables.

One by one, the nodes scheduled by the master will create their own ranging sched-
ules, distribute them to their neighbours, perform ranging with the chosen nodes
and then broadcast their updated position. The nodes can decide the total number
of neighbours and the individual nodes they want to do ranging themselves. This
should be based on the previous rounds and the position of the other nodes (opti-
mally, the other nodes should be evenly distributed around the node to result in the
highest accuracy). However, their time slot is limited and communicated to them in
the MCF'. Depending on the amount of moving nodes, the master can dynamically
reduce or enlarge the total length. Just as for the length of the CAP, a maximal
and minimal value has been fixed which the algorithm will not exceed.

Note: While a node which wants to initiate transmission needs to be in a so-called
Verifier mode, reception can occur either in the Prover or the Rx mode. While in
the latter, the node simply receives the packet, in the former mode, it automatically
sends a reply back. This reply is used for the time-of-flight calculation which is then
processed to calculate the distance between the nodes. In figure 2.4 the owner of
the current slot is always in Verifier mode, while neighbours are in the Prover mode
in case they are included in the ranging schedule and in the Rz mode otherwise,
waiting for the position update.

Chapter 3

Implementation

In this chapter, we briefly cover the implemented algorithms as well as scripts written
for visualisation of the data. In order to verify whether the actual algorithms on the
nodes resulted in correct output, we cross-referenced them with output generated
by a Matlab implementation.

3.1 Embedded System programming

The programming code for the nodes is written in C and uploaded to the Arduino
Due as an Arduino project over the Serial port. The integrated curcuit used for
distance measurement itself is neither programmable nor directly accessible. Data
to and from the IC can be read using an API written by 3DBSystems. At the time
of writing, the current software release for the hardware platform was MIDAS V2.0.

3.1.1 Structure

The code is partitioned into six main files, each with its own header. The depen-
dencies between the files are sketched in figure for the first stage and for
the second stage. The most important parameters for each file (situated in the
corresponding header files) are included below.

structure.c is used as the entry point and, as its name suggests, defines the overall
framework. In it, the parameters outlining the project as well as the fundamental
structure for the different stages are given. It furthermore includes the data structure
for information which is relevant to all other files such as node ID, current position
and neighbouring nodes.

Its header structure.h is included in all other source files and grants access to global
properties and functions.

e PROJ SUPPORTED NODES: limits the maximal number of nodes; this is
only restricted for compile-time memory allocation.

18

3.1. EMBEDDED SYSTEM PROGRAMMING 19

e PROJ ID RANGE: defines the possible values for the service set identifiers
(SSID); for static IDs, this should be adjusted.

e PROJ STARTUP_ MOVING: sets the node either as mobile or stationary;
for this thesis, nodes cannot change their status during runtime.

e PROJ CAP LENGTH MAX:together with PROJ CFP_ LENGTH MAX,
it defines the maximal update interval in-between position updates .

communication.c includes all functions used for inter-node communication. It also
features MAC layer functionality and leader election. In most cases, there exists a
sending and a directly corresponding receiving function.

Its header communication.h contains all constants which are immediately relevant
to the transmitted data such as the definitions of the header types as well as timings
required for correct interactions.

e PROJ SYNCHRONIZATION DELAY : sets a minimum delay at certain phases
to synchronize the protocol over multiple nodes.

e PROJ COMMUNICATION TIMEOUT: defines a maximal waiting time for
a response until the node automatically continues its execution and ignores the
failure.

localization.c contains all functions related to multidimensional scaling, distance
estimation and ranging. Internally, it utilizes lateration.c for the two implemented
lateration algorithms (see section |3.1.2]).

datafitting.c offers polynomial data-fitting and relies on Gauss-Jordan elimination
(see section [3.1.2)) to provide smoother trajectories. The implementation is designed
to be modular and allows for quick inclusion and adaptation of other algorithms.

e PROJ DATAFITTING FENABLE: turns this option on or off.
e PROJ DATAFITTING_ORDER: determines the order of the polynom used

for interpolation; higher order requires drastically more computation time.

e PROJ DATAFITTING HISTORY: limits the number of historic values to
be used.

helper.c provides helper functions for all other files and aggregates all debugging
functionality. Furthermore, it is used for the visualisation.

e PROJ PRINT ENABLE allows switching output for the visualisation func-
tions on or off to limit the load on the Serial port.

For figures and some dependencies were simplified or entirely omitted to
improve recognition and readability of the general structure. The figures are directly
comparable with figure [2.2] and should bear many similarities.

3.1. EMBEDDED SYSTEM PROGRAMMING

Initialization

structure.c

communication.c

localization.c

project_init()

MasterDiscovery()

NeighbourDiscovery()

False True

isMaster

P

receiveMIF() sendMIF()

g

requestFrameInCAP() respondMIF()

1

receiveMCF() sendMCF()

——

getDistanceMatrix()

False

Is currently

scheduled node?

True

sendRangingSchedule()

receiveRangingSchedule()

respondToRanging()

performRanging()

l

sendDistanceVector()

waitForDistanceVector() receiveDistanceVector()

C 1 J

more nodes in

MCFSchedule?

False True

isMaster

calculateRCS()

receiveRelativeCoordinates() sendRelativeCoordinates()

20

Figure 3.1: Function flow diagram for initialization

3.1.

EMBEDDED SYSTEM PROGRAMMING

Main loop structure

structure.c

communication.c

localization.c

lateration.c

project_loop()

True
isMaster

False

receiveMIF()

StartedMoving

receiveMCF()

sendMIF()
True
requestFrameInCAP() respondMIF()
sendMCF()

True

Is currently

scheduled node?

False

receiveRangingSchedule()

True

Is in current
RangingSchedule?

False

sendRangingSchedule()

respond)

perfor

receiveNewPosition()

more nodes in
RangingSchedule?

createRangingSchedule()

performRanging()

calculatePosition()

sendNewPosition()

more nodes in
MCFSchedule?

calculateMultilateratedPosition()

Figure 3.2: Function diagram for main loop structure after initialization

21

3.2. VISUALISATION 22

3.1.2 Mathematical calculations

Singular value decomposition

For multidimensional scaling, we require a singular value decomposition (SVD) al-
gorithm. The code used for this thesis can be found in SVD.c and is an adapted
version of code provided by Prof. Diana Crook [33] to handle floats and variable
length arrays (VLAs).

Trilateration & multilateration

For trilateration, an algorithm developed by Thomas et al. [29] has been selected.
As all terms used in the calculations have a geometric meaning, special cases such
as singularities can be analysed in space, allowing to define direct implications.

Multilateration has been accomplished by utilizing work of Zhou [30]. In his paper,
he gives a closed-form algorithm for a least-square approximation of the position
which offers low computational complexity and allows a theoretical analysis of the
performance under the influence of noise.

Gauss-Jordan Elimination

To solve the equation system for the polynomial datafitting algorithm, we apply
classical Gauss-Jordan elimination and extend it with the Gaussian normal equations
for over-determined matrices. As more historic values are required than the degree
of the polynomial used, the equation system in the algorithm should always be over-
determined. Otherwise, we would simply interpolate k points with a polynomial of
degree k£ — 1, resulting in the same data points as output as were used as input,
rendering the algorithm useless.

3.2 Visualisation

To improve the analysis of the measurement data, we made use of the Python
programming language to visualize the positions as point clouds in 3D with a library
called Matplotlib [34]. This solution allows cross-platform data animation in real-
time as well as logging the measurements for later usage and evaluation.

The implemented software has multiple features which can be enabled individually.
During measurements, data is visualized directly in a 3D scatter plot and can be
written into a log file on the device running the program. The measurement data
can optionally be enriched by timing information to see duration and spacing of
the measurements. During an experiment, it proved to be of great use to have the
option of marking certain events such as reaching a specific point in the path or
marking special data for later evaluation.

3.2. VISUALISATION 23

TTTTT

Figure 3.3: Measurements resulting from moving in a 15x30 meters square displayed
in 3D (top) and from above for better recognition (bottom)

For post-processing and offline analysis, the option to read from a previous recording
of an experiment has been included as well. Especially with tracing enabled, this
allows to study the path and the measurement quality of the data even long after
the experiment has been conducted.

Every node, independent whether master or slave, can be used in combination with
the visualisation program. Transmission of the data from the node to the computer
is accomplished over the Serial port. The reading is done in a non-blocking fashion
to allow for smooth animation display and manipulation.

Data is encoded and includes information about whether they are MDS coordinates
or ones from moving nodes as well as node IDs and 3D positioning data:

$ MDS: 02.02/128.047/098.002/099.094\n
$ DATA: 10.10/087.087/098.068/099.040\n

3.3. VERIFICATION 24

The program is started directly from console and only needs the current Serial port
(in the example the Windows port COM5) as an argument:

$ python recvCoordinates_Serial.py COM5

Before execution, the above mentioned features can be set according to the current
requirements:

e PROJ LOG_ENABLEFE turns logging to a file on or off

e PROJ ADD_ TIMESTAMP includes a time stamp for each measurement if
true; this can be utilized for time measurements

e PROJ READ_ KFEYPRESS adds a separator into the log file to mark special
events if true; this is used to create the ground truth for measurements

e PROJ READ_FILE enables reading from a present log file instead of live
data

e PROJ SHOW TRACE displace a trace of the moving nodes in addition to
the current position if set to true

It is furthermore possible to save the animations directly as a video file. However,
the animation is not affected when the coordinate system is manually rotated for
a better viewing angle, wherefore we used a screen-grabbing tool to get the entire
information and have more recording flexibility.

3.3 Verification

For correctness proofs of the implemented algorithms on the embedded system, we
first built them using Matlab. This allowed us to properly debug the code on the
nodes, as the platform does not provide direct debugging tools and requires output
comparison. It also enabled us to quickly visualize and evaluate the applied methods
with simulations.

mds.m creates a relative coordinate system based on multidimensional scaling. The
realisation is based on code from [8] and [9]. A squared distance matrix D can be
used as input to calculate the corresponding RCS for comparison with the output of
the C code. Using MDS testing.m, the algorithm creates random positions for a
given number of nodes, calculates the RCS and compares the inter-node distances
of the coordinate systems to verify the correctness of the solution.

tri.m is an implementation of the trilateration algorithm developed by Thomas et
al. [29]. The code can be accessed on their webpage and is fairly compact. As
input, it requires three points as well as the measured distances to the moving node.
Due to the flip ambiguity discussed in previous sections, the algorithm outputs two
possible solutions.

multi.m includes a realisation of the multilateration algorithm proposed by Zhou
[30]. Tt requires numerous matrix calculations, but profits from smaller matrices

3.3. VERIFICATION 25

than trilateration. Just as tri.m, the algorithm calculates the new position based
on three or more existing node positions and the known distances to the node in
question and outputs two possible locations.

Comparison.m is a script that can be used to compare results from trilateration
and multilateration. It calculates both solutions and displays the resulting points.
Furthermore, it shows the spheres around the previous positions to visualize their
intersection and includes the base plane (through the three original positions) to
show the flip ambiguity in 3D.

As can be expected, with just three nodes and perfect measurements, trilateration
and multilateration result in the exact same coordinates. However, multilateration
offers the ability to incorporate much more data and will result in better predictions
for high-noise scenarios (see Section [4.1]).

Figure 3.4: Display of the two possible solutions (red) of the multilateration algo-
rithm; intersection of the circles (top) and the flip ambiguity along the
base plane (bottom) are clearly visible

Chapter 4

Evaluation

This chapter shows the system in practise and gives an insight into how well it might
perform under different circumstances. First, we simulated the algorithms with
artificial noise, which allowed us to evaluate performance with various parameters
and see the influences of different stages on the resulting measurement error. Then,
we investigated the scalability of the system using the actual pysical parameters of
our system. In the last section, the method was tested with four nodes and compared
to a ground truth to evaluate performance in urban and suburban environments.

4.1 Error behaviour of the algorithms

In order to estimate the influence of distance measurement errors on the proposed
system, we tested and simulated multidimensional scaling, trilateration and multi-
lateration in Matlab under various conditions. We chose a network with 100 nodes
randomly distributed inside a cube of side length 100m. We then introduced ad-
ditive white Gaussian noise of zero mean and different variance and examined the
influence on the accuracy of mentioned algorithms.

Note: All simulations were repeated a thousand times and the resulting histogram
smoothened to increase readability. In order to facilitate comparison, the plots use
the same x-scale; the probability density outside the given sector is negligible.

Multidimensional Scaling

MDS is an algorithm which is known to be prone to strong fluctuations if no post-
processing of the relative coordinate system is conducted (as already mentioned in
previous sections). Therefore, error examination is of great importance to see how
well the system will perform.

In a first step, we considered the distance error in-between points of the RCS which
will result from erroneous rangings. As can be seen in figure[d.1] the average distance
error in the system increases linearly with the standard deviation of the noise and
remains nearly constant over multiple iterations.

26

4.1. ERROR BEHAVIOUR OF THE ALGORITHMS 27

500 —

Pooo
ouiv

3333

400 —

300 —

200 —

probability density (pdf)

100 —

T T T T
0.0 0.5 1.0 15

localization error [m]

Figure 4.1: Distance error after MDS for measurement error with standard deviation
0.1m [red], 0.2m [blue|, 0.5m [green| and 1.0m [cyan]

To gather information about the positioning error due to multidimensional scaling,
we used the (defective) MDS coordinates in conjunction with the correct (noise-free)
distances in the original coordinate system to calculate the position of a random
point in the RCS (see figure . For small measurement inaccuracies, the MDS-
induced error is fairly limited to a median value of 10-20cm. This increases up to
90cm in case of 1m standard deviation (see Appendix for more detailed results).
Therefore, the influence of the MDS positions on the localization error is limited
for the operational range of the system and still offers good performance even over
large distances.

~
Il
POoOo
vk
3333

probability density (pdf)

T T T T T
0 1 2 3 4

localization error [m]

Figure 4.2: Distance between correct and calculated position with MDS for mea-
surement error with standard deviation 0.1m [red], 0.2m [blue]|, 0.5m
|green] and 1.0m [cyan|

4.1. ERROR BEHAVIOUR OF THE ALGORITHMS 28

2.0

rooo
ouivk
3333

15

1.0

probability density (pdf)

0.5 —

\\'4ﬁ\;::::::::::ti:Lg1i>>===::::=>_4i::>:::::¥=
0.0 —

T T T T T
0 1 2 3 4

localization error [m]

Figure 4.3: Distance between correct and calculated position with Trilateration
for measurement error with standard deviation 0.1m [red], 0.2m [blue],
0.5m |[green| and 1.0m [cyan]

Lateration

While trilateration offers the exact same results as multilateration for precise dis-
tance measurements, its lack of redundant data makes it prone to large localization
errors. As this algorithm has just enough information to calculate the position, but
no additional information to correct and interpolate data, ranging errors strongly
influence the resulting solutions. Therefore, it is useful to compare trilateration
and multilateration, which does not suffer from the same flaw and should therefore
provide increased accuracy.

Figurel4.3|shows that position estimates quickly deteriorate and can only cope with a
certain amount of measurement noise. While in the cases of only limited deviations,
we can observe around half a meter of positioning error in most cases, the average
error increases to nearly five meters with large noise.

Multilateration can handle this problem much better. Using ten nodes for ranging,
figure demonstrates that the localization error can be cut in half in comparison
to trilateration. Even for a large noise with standard deviation of 1m, the median
error still only lies at 1.6m and can be kept in check. However, the estimates still
become notably more unstable and are spreaded over a much larger section when
the noise level rises over a certain limit.

Another interesting analysis is the behaviour of multilateration under a varying
number of neighbours used for ranging as seen in figure[4.5 Fixing the measurement
error to a standard deviation of 0.5m, we increased the number of nodes included for
the calculations and witnessed an expected increase in performance. Even though
the noise level is on a rather high level, a large data set gives us enough redundancy
to increase the robustness of the algorithm. Therefore, we can achieve a similar
accuracy as the low-noise conditions by dynamically adjusting the ranging duration.

4.1. ERROR BEHAVIOUR OF THE ALGORITHMS 29

4 — 0lm
— 02m
—— 05m
1.0m
-
g
z
g
z 27
:
g
.
0
T T T T T
0 1 2 3 4
localization error [m]

Figure 4.4: Distance between correct and calculated position with Multilateration
for measurement error with standard deviation 0.1m [red], 0.2m [blue],
0.5m [green| and 1.0m |[cyan|

— 10
— 20
15 —
% 1.0
g
z
:
<]
0.5 -
0.0
T T T T T
0 1 2 3 4
average distance error [m]
Figure 4.5: Distance between correct and calculated position with Multilateration

when performing ranging with 10 [red], 20 [blue], 30 [green| or 50 [cyan]
neighbours (measurement error fixed at a standard deviation of 0.5m)

4.2. THEORETICAL ANALYSIS 30

4.2 Theoretical analysis

Of major interest for any party evaluating a proposed method is its scalability.
Therefore, we examine the influence of the intended update frequencies and envi-
sioned accuracy (depending on the number of nodes used for multilateration) on
the amount of supported moving nodes. For this, derive a formula for the maximal
number of moving nodes based on those two parameters. As the duration of the ini-
tial stage has no influence on the system’s later performance and time consumption
is assumed to be of no importance at the beginning, we concentrate on the later
stage in this analysis.

Time consumption
First and foremost, some basic time durations need to be adressed. The presented
values are all based on the currently implemented system:

® tsena = 2ms : the time the system takes to send a value and ensure it is
received correctly before it is allowed to send the next package

tswitch = 3ms : the time needed to switch in-between different modes of
operation such as Verifier and Prover mode

tranging = 2ms : duration of one ranging attempt between two nodes

teale = Ims : runtime of the multilateration algorithm

tge = Dms : runtime of the polynomial data fitting algorithm (depends
strongly on the chosen parameters)

It is interesting to see that multilateration, even though is uses more matrix multipli-
cations, revealed to be faster than the trilateration algorithm. While multilateration
with three nodes performed well with 320us for float values and 830us for double
values, trilateration required 1520us due to the calculation of more determinants
and larger matrices. Therefore, even though multilateration might seem to be more
computationally expensive at first, it demonstrated outperforming trilateration not
only in versatility but also computational complexity.

Theoretical bounds

Based on the timings in the previous subsection, we can define the duration of the
entire system. However, we additionally require the expected number of participat-
ing nodes in the system. For this, we define three variables:

e Ncap = 1 : the expected number of new nodes which need a CAP slot
e Ncrp : the expected number of moving nodes using the CFP

® N,ang = 5 : the average amount of ranging partners of a moving node

4.2. THEORETICAL ANALYSIS 31

With Neap = 1, we maximally have a small number of collisions in each CAP.
Therefore, it suffices to expect at most one collision on average. As we start with a
backoff-window of 8 and double it after a collision, we set a standard CAP length
of 8 + 16 = 24 slots with t,.,4 duration each:

tcontention = (8 + 16) * tsend =24 % 2ms = 48ms

Using those values, we can now define the durations of CAP and CFP as well as the
total duration of one round:

tCAP = tsend + tswitch + (8 + 16) * tsend + tswitch

- tsend + 2 % tswitch + tcontention

tCFP - tsend + NCFP * (tswitch + tsend + Nrang * tranging + tcalc + tfit + tsend)

1

f update

tround = =tcap ttlcrp

Using those terms and rearranging the terms, we can derive a formula for the max-
imally allowed Ncpp depending on fupdate and Nygng:

Fupdate - tCAP - tsend

Nrang * tranging + tswitch + 2% tsend + tcalc + tfzt

Nepp = (4.1)

We can see that both f,pqate and Nyqpg are inversely proportional to Nepp. There-
fore, if we increase demands on the update frequency or number of rangings for a
new position estimation, we limit the supported number of moving nodes in the
system. This can be caused by highter node velocities, requiring more time to evade
collisions and therefore a higher update frequency, or increased accuracy needs which
lift the number of nodes used for multilateration.

Evaluating equation for the two parameters fypgate and Nygpng, We see that the
update frequency strongly limits the maximal number of moving nodes (see figure
4.6), whereas an increased number of nodes for multilateration has only limited
impact for values below ten. The maximal frequency which still supports moving
nodes with N,q,, fixed at 5 is 12.3 Hz, delivering position updates every 80ms. On
the other hand, for a fixed t,,,,q of 200ms, we can support up to 64 nodes used for
multilateration with a moving node.

The formula can also be applied directly to physical systems. Using a maximal
velocity of 20m /s and taking 4m as a safety distance, below which two nodes should
evade each other, we require an update frequency of 5 Hz. Using equ. 4.1, we can
directly jump to the conclusion that at most six moving nodes can be supported
at any time. On the other hand, a single moving node can use up to 64 nodes for
multilateration, allowing for extremely accurate position estimation.

4.2. THEORETICAL ANALYSIS 32

maximal number of moving nodes
maximal number of moving nodes

'
|
0]
T

T
0 5 10 123 15 0 20 40 50 64 80

frequency [Hz] Number of nodes for multilateration

Figure 4.6: Evaluation of expression over update frequency (left; N, ., fixed at
5) and over Nyung (right; fupdate fixed at 5 Hz)

The time values chosen for this theoretical evaluation depend strongly on the physi-
cal implementation of the system. To investigate possible improvements by reducing
certain durations, we considered the three parameters most likely to be enhanced
by adjusting the hardware:

e decreasing the slot time used in a CAP from .4 to a value closer the ones
used in comparable systems such as WLAN (802.11) with 9 microseconds by
improving the recognition of partial frames.

e optimizing data fitting parameters to decrease ts; to the same level as the
time used for the position calculation itself instead of multiples of it

e cnabling the same switching time between all modes by a software update to
decrease tgypiren. With the current hardware platform, switching between the
receiving Rz and the sending mode takes more than one hundred times as
long as switching from Prover mode to a sending mode, even though latter
is technically more demanding and has additional functionality compared to
firmer mode.

Following this reasoning, we decrease the corresponding values to tg,; = 0.1ms,
trie = Ims and tgypien, = 0.1ms. A comparison between figures and shows
that the number of mobile nodes can be increased dramatically for a given update
frequency by improving the hardware platform and optimizing the implementation
to decrease the individual durations. However, the number of neighbours a moving
node might use for multilateration does not have the same correlation and only
slightly increases.

Such a system would allow fifteen nodes to simultaneously move and still update
their position with a refresh rate of below 250ms. On the other hand, if requirements
concentrate on accuracy, nearly 100 neighbours can be utilized to track a node with
high precision.

4.3. MEASUREMENTS 33

maximal number of moving nodes
maximal number of moving nodes

0 — |
T T T T I T T T T T T I

0 10 20 30 44 50 0 20 40 60 80 94

frequency [Hz] Number of nodes for multilateration

Figure 4.7: Evaluation of expression over update frequency (left; N, ., fixed at
5) and over Nyup, (right; fupdate fixed at 5 Hz) with improved parameters

4.3 Measurements

To evaluate the system under real-life conditions, we took four nodes out into the
field and let one moving node follow a preset path. This gave us a well-known ground
truth as a reference value to compare the localization accuracy of the system with
actual physical coordinates.

The nodes were setup in a height of one meter and had antennas facing into the
center of the square. This prevented unreliable ranging results which are usually
found when situating antennas near ground-level due to many direct reflections and
when antennas have parallel normal vectors, preventing any line-of-sight components
from reaching other nodes.

Urban

The first scenario covered a typical urban or indoors environment with many build-
ings and reflecting surfaces, leading to strong multipath behaviour. As all of those
signals influence the measurements in different ways, the line-of-sight path (LOS) is
more difficult to detect. This component is used to calculate the distance between
nodes, as the estimation is based on the time of flight in-between them.

For the measurements, we used a 15m x 30m rectangle (see figure . The three
stationary nodes were setup in a triangle around the rectangle at a slightly lower
hight than the moving node to prevent all of them being in one plane. The distances
between the nodes were 25m and 40m, allowing the moving node to be inside the
triangle for most of the measurement series (which has an influence on measurement
accuracy). For the positioning itself, no further setup was necessary, as everything
is conducted directly by the system itself.

4.3. MEASUREMENTS 34

Error type Average error Median error
total 1.2396 0.8678
xy-plane 0.9689 0.6211

Table 4.1: Urban measurement results with outliers included

Error type Average error Median error
total 0.9346 0.8519
xy-plane 0.7265 0.6037

Table 4.2: Urban measurement results with outliers excluded

The resulting positioning estimates showed good results in this challenging environ-
ment. While the total average error was just above one meter, its median was well
below at 86cm. Therefore, even with some outliers, the system achieves submeter
accuracy when looking at the median distance error between estimated and real
position.

As the movement was entirely restricted to the xy-plane, the z-direction only adds
noise and therefore does not include any valuable information for the operator in
this case. This motivates evaluating the measurement error solely projected onto
the xy-plane. There, we see an average error of just one meter and a median value
well below at only 60cm. Therefore, even over distances of 40 meters, our algorithm
performed very well and delivered constant and accurate positions.

Due to a hardware bug concerning registers on the node, once in a while measure-
ments may be rather off and outliers might occur. From over 400 measurements
conducted for this test, excluding one percent of them as outliers with measurement
errors of over twenty meters, the average error could be reduced dramatically by
25% to merely 90cm for the total error and 70cm in the xy-plane. Those values
compare well with the median values and show that apart from one percent of the
measurements, only a few of them are considerably higher than average and result
in an average error being slightly highter than the median one.

Rural

To compare an urban environment with a rural setting, we reproduced the tests
on a field. As the influence of multipath is strongly reduced, the second set of
measurements can be used as a prediction for an upper-bound of the system accuracy
in general.

Once again, the stationary nodes formed an isosceles triangle with 25m and 35m
in-between. To prevent influences from objects around the nodes, we restricted the
movement to a square of 10m x 10m. During the entire measurement series, the
moving nodes stayed inside the triangle, which prevents strongly fluctuating results
depending on the position.

4.3. MEASUREMENTS 35

Figure 4.8: Urban (left) and rural (right) measurement setups; blue dots signalize
stationary nodes and the starting position of the mobile node

Figure 4.9: Urban (left) and rural (right) trace plots; blue dots visualize the MDS
coordinates, orange triangle the past positions of the moving node and
the red triangle the current (last) position

The new scenario proofed to result in better measurements, as was expected with
less interference and therefore a better distance estimation. While the average error
dropped by 40% to just above half a meter compared to the previous results without
outliers, the errors in the xy-plane more than halfed to only 30cm. Furthermore,
average and median errors are much closer together, suggesting even less outliers
and more consistent measurements.

As can be seen in figure [1.9] a certain part of the measurement series had to be
ignored due to the algorithm on one of the nodes being stuck. As in the case with the
outliers in the urban environment, this is a result of a known current hardware bug
which prevents nodes from receiving all the packages meant for them and therefore
waiting an extended amount of time until a timeout is reached. During this period,
the node cannot be used for ranging and therefore the moving node is unable to
update its position with only two nodes left. This problem can be solved by either
including more nodes in the test environment or improving the hardware directly.

4.4. GENERAL LESSONS LEARNED 36

Error type Average error Median error
total 0.5529 0.5293
xy-plane 0.3002 0.2628

Table 4.3: Rural measurement results

Multiple moving nodes

Due to issues with the present hardware, using a network with additional nodes to
increase reliability and accuracy of the system was not possible, even though the
system itself does not introduce any restrictions on this number. Unfortunatelly,
a limited network consisting of only four nodes does not offer enough redundancy
and robustness to have multiple moving nodes. As two moving nodes in this setting
rely on each others position information for tracking, a slightly off estimate for one
of them immediatelly results in the other node adjusting its position into the same
directly and therefore strong error propagation. With more nodes, multilateration
would prevent such directed behaviour by the "law of large numbers", as the errors
would average out and a single measurement does not influence the rest as strongly.

4.4 General lessons learned

While testing, we encountered many surprising results and had to find means and
methods to stabilize measurements and faciliating evaluation. Some of the most
important practical experience gains are listed below.

e Even though measurements sometimes varied considerably from the real dis-
tances between nodes, multiple measurements proofed to be consistent most
of the time. Therefore, repeating rangings multiple times is of less usage than
using more nodes in multilateration. Best results are achieved when choos-
ing the minimum distance in multiple repeated measurements due to the way
leading-edge detection is currently implemented.

e Never measure directly at ground level. This distorts the measurements due
to strong reflections and prevents reliable results.

e Ensure correct antenna alignment so that their normal vectors are never par-
allel to each other. Otherwise, their LOS components will not be detected
correctly and the resulting measurements will not correspond to the real dis-
tances.

e Measurements in open areas without structures and reflecting surfaces deliv-
ered much preciser position estimates than urban or indoor areas. To ease
evaluation and verification, use setups of appropriate scale, as otherwise mea-
surement noise and displacement are difficult to keep apart.

4.4. GENERAL LESSONS LEARNED 37

e The flip ambiguity made measurements with multiple nodes extremely tire-
some when only doing rangings with four nodes, as there is a 50/50 chance
that the MDS direction and the chosen solution are aligned for each moving
node. Therefore, using more nodes in additional planes is strongly encouraged
to prevent this from happening.

e Multidimensional scaling can be quite instable and depends strongly on pre-
cise measurements, especially for networks with a small number of nodes.
Therefore, we suggest using an improved MDS algorithm to eliminate those
deficiencies.

e Multilateration is not necessarily computationally more expensive than trilat-
eration as originally expected. Algorithms need to be implemented and tested
on the present hardware to allow correct conclusions.

Chapter 5

Conclusion & Outlook

5.1 Conclusion

By relying on existing, proven algorithms and designing a custom system suited for
our requirements, this thesis achieves the tracking of multiple moving nodes in a
infrastructure-free environment. Through its modular design, it allows for selective
and uncomplicated extensions and displays concrete improvement steps. We could
show that in real-world applications, the system achieves satisfiable performances
and can locate moving objects with high accuracy. With a refresh time of 200ms, up
to six nodes can move simultaneously and can perform ranging with up to 64 other
nodes to increase their precision. The nodes are deployed within minutes and can
be monitored in real-time with intuitive and cross-platform tools to help identifying
problems and estimate accuracy.

5.2 Future work

As to our knowledge, no other existing solution for infrastructure-less tracking with
UWB measurements exists, this thesis served as a proof-of-concept and showed the
method’s capabilities and options. However, it still leaves room for improvement in
multiple directions:

Optimization

e Evaluate the best suited parameters for datafitting. This should depend on
the given movement patterns; as an example, erratic movement allows for less
historic values to be used, whereas enduring trends can be better described
with more historic values and lower polynomial order. This does however in-
crease computational complexity dramatically and can have significant impact
on the calculation time.

38

5.2. FUTURE WORK 39

e Deploy refined hardware which resolves specific current problems. An example
would be the increase of antennas to lessen the influence of the node orienta-
tion on the measured distances and to apply beamforming for increased range
and signal-to-noise ratio. Furthermore, multiple internal problems can be ad-
dressed to prevent present workarounds and improve overall performance in
terms of accuracy and time consumption.

e Apply MDS optimization methods (see section to increase the initial
accuracy of the relative coordinate system. Multidimensional scaling results
tend to fluctuate strongly under noise, but can be improved in various ways
as described in the thesis.

Scalability & Network dependence

e Find an optimal function to achieve the best ranging quality by dynamically
deciding on the number of nodes to do ranging with. Currently, this is fixed
to three nodes to get a maximum amount of rangings with single nodes due
to a hardware register bug.

e Investigate which nodes offer the best accuracy for ranging measurements and
how the number of nodes can be balanced with energy consumption. As all
nodes which are not included in the ranging can sleep during this period, a
trade-off between persistence of the system and accuracy has to be evaluated.

e Investigate the influence of different constellations on the precision of the po-
sition estimate and how nodes should be deployed or delocated to increase the
performance of the system.

e Simulate large swarms of simultaneously moving nodes to evaluate the system’s
accuracy and stress test the implemented MAC protocols.

Extension

e Add functionality for a mobile node which newly arrives to be included in the
system and aided during migration to other clusters. At the moment, this
is not implemented solely because of the requirement for an additional phase
and therefore further protocol complexity. The system itself is designed to be
easily extendable by adding such a phase and already supplies most of the
required functionality for such a step.

e Add recombination of multiple RCS to one large, global coordinate system by
using rotation and alignment operations (see Fan et al. [23] for an existing 3D
solution)

e Implement different systems such as anchor-based, GPS-based and infrastructure-
free methods for the same measurements and compare their efficiency, required
efforts, costs and accuracy.

Appendix

Header types

In communication.h, the different header types and their corresponding packet struc-
ture are described in detail. The table below lists the header types and their usage.

Binary Abbrevation Name byte size
0000 SLOT REQUEST Slot Request broadcast (for CAP) 0
0001 DISTANCES Slave Distance vector X
0010 SCHEDULE Ranging Schedule announcement X
0011 LOCATION Position & mobility status broadcast 7
1000 MASTER ANN Master Announcement broadcast 0
1001 MASTER_RCS Master Relative Coordinate System X
1010 MASTER__MIF Master Information Frame 1
1011 MASTER _MCF Master Control Frame X
1100 MASTER_ACK Master acknowledgment of a slave slot request 0

Table 5.1: Header types and their usage (X: size varies)

Deployment

For developing and testing the code on the nodes, we used an open source IDE called
PlatformIO [35]. Tt offers user-friendly inclusion into Atom and easily allows node
deployment and port detection via console.

Device listing and port detection:

$ pio device list

For deploying the program and reading the Serial output (e.g. on port COMS3):
$ pio device monitor --port COM3 --baud 115200

40

5.2. FUTURE WORK 41

Simulation results

The following table gives a detailed numerical insight into the plots mentioned in
Chapter 4: FEvaluation. Note that the average is strongly distorted due to outliers
which can have errors of magnitudes higher than the median value.

Algorithm Standard deviation Average error Median error
MDS 0.1m 0.2046 0.0971
0.2m 0.3886 0.1927
0.5m 0.8322 0.4761
1.0m 1.5785 0.9383
Tiilateration 0.lm 06449 03103
0.2m 1.1181 0.6173
0.5m 2.7455 1.5840
1.0m 4.7429 2.1334
Multilateration 0.lm 0.2585 01581
0.2m 0.5315 0.3250
0.5m 1.1747 0.7911
1.0m 2.1334 1.6203

Table 5.2: Statistical data corresponding to the plots in Section

For the comparison of multilateration with multiple nodes, we used a standard
deviation of 0.5m. As compared to the upper results which used multilateration
with a fixed number of nodes of ten, this table shows that increasing the number of
nodes for the ranging results in a large accuracy gain.

Algorithm number of nodes Average error Median error
Multilateration 10 1.0759 0.7692

20 0.8215 0.6012

30 0.7901 0.5095

50 0.6289 0.4312

Table 5.3: Statistical data corresponding to the plots in figure

Bibliography

[1] "Knowledeblob: A brief about Internet of Things."
http://knowledgeblob.com/technology/a-brief-about-internet-of-
things-iot/.

Online; accessed June 7, 2017.

[2] "IoT-LAB : Very large scale open WSN testbed."
https://www.iot-lab.info/.
Online; accessed June 7, 2017.

[3] "Techcrunch: Amazon has aquired 2lemetry to build out its IoT Strategy."
https://techcrunch.com/2015/03/12/amazon-has-quietly-acquired-
2lemetry-to-build-out-its-internet-of-things-strategy/.

Online; accessed June 7, 2017.

[4] "Venturebeat: Verizon aquires IoT Startup Sensity Systems."
https://venturebeat.com/2016/09/12/verizon-acquires-iot-startup-
sensity-systems-to-make-cities-smarter-through-led-lights/.
Online; accessed June 7, 2017.

[5] F. L. Lewis. Wireless sensor networks. Smart Environments: Technologies, Pro-
tocols, and Applications, chapter 4, 2004.

[6] K. Akkaya, and M. Younis. A survey on routing protocols for wireless sensor
networks. Ad Hoc Networks, vol. 3, no. 3, pp. 325-349, 2005.

[7] C. Jun-jie, X. Ben-chong, and D. Li. Relative Localization Systems and Algo-
rithms for Wireless Sensor Networks. IEEE International Conference on Net-
working, Sensing and Control, Sanya, pp. 1439-1444, 2008.

[8] Biljana Stojkoska. Nodes localization in 3D wireless sensor networks based on
multidimensional scaling algorithm. International Scholarly Research Notices
2014, 2014.

[9] Sudhir Kumar, and Rajesh M. Hegde. A Review of Localization and Track-
ing Algorithms in Wireless Sensor Networks. arXiv preprint arXiv:1701.02080,
2017.

[10] X. Wang, M. Fu, and H. Zhang. Target Tracking in Wireless Sensor Networks
Based on the Combination of KF and MLE Using Distance Measurements.
IEEE Transactions on Mobile Computing, vol. 11, no. 4, pp. 567-576, 2012.

42

http://knowledgeblob.com/technology/a-brief-about-internet-of-things-iot/
http://knowledgeblob.com/technology/a-brief-about-internet-of-things-iot/
https://www.iot-lab.info/
https://techcrunch.com/2015/03/12/amazon-has-quietly-acquired-2lemetry-to-build-out-its-internet-of-things-strategy/
https://techcrunch.com/2015/03/12/amazon-has-quietly-acquired-2lemetry-to-build-out-its-internet-of-things-strategy/
https://venturebeat.com/2016/09/12/verizon-acquires-iot-startup-sensity-systems-to-make-cities-smarter-through-led-lights/
https://venturebeat.com/2016/09/12/verizon-acquires-iot-startup-sensity-systems-to-make-cities-smarter-through-led-lights/

BIBLIOGRAPHY 43

[11]

12|

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

http://monet.postech.ac.kr/research.html.
Online; accessed June 7, 2017.

"ublox: Product display."
https://www.u-blox.com/en/product-search/field_product_category/
position-time-152/field_product_class/modules-199/field_product_
tech/high-precision-gnss-171.

Online; accessed June 7, 2017.

I. Stojmenovic and X. Lin. Loop-free Hybrid Single-path Flooding Routing Al-
gorithms with Guaranteed Delivery for Wireless Networks. IEEE Transactions
on Parallel and Distributed Systems, 12(10), pp. 1023-1032, 2001.

Adel M. Youssef, and Moustafa Youssef. A taxonomy of localization schemes
for Wireless Sensor Networks. ICWN, pp. 444-450, 2007.

S. Capkun, M. Hamdi, J.P. Hubaux. GPS-free positioning in ad-hoc networks.
Proceedings of the 34th Hawaii International Conference on System Sciences,
pp. 3481-3490, 2001.

R. Iyengar, and S. Biplab. Scalable and distributed GPS free positioning for
sensor networks. IEEE International Conference on Communications 2003, vol.
1, pp. 338-342, 2003.

L. Wang, and Q. Xu. GPS-free localization algorithm for wireless sensor net-
works. Sensors, 10(6), pp. 5899-5926, 2010.

W. Cui, C. Wu, W. Meng, B. Li, Y. Zhang, and L. Xie. Dynamic Multidimen-
stonal Scaling Algorithm for 3-D Mobile Localization. IEEE Transactions on
Instrumentation and Measurement, 65(12), pp. 2853-2865, 2016.

Y. Shang, W. Ruml, K. Zhang, and M. Fromherz. Localization from mere con-
nectivity. ACM MobiHoc, pp. 201-212; 2003.

Y. Shang, and W. Ruml. Improved MDS-based localization. INFOCOM 2004.
Twenty-third AnnualJoint Conference of the IEEE Computer and Communi-
cations Societies, vol. 4, pp. 2640-2651, 2004.

B. Stojkoska, D. Davcev, and A. Kulakov. Cluster-based MDS algorithm for
nodes localization in wireless sensor networks with irreqular topologies. Pro-
ceedings of the 5th International Conference on Soft Computing As Transdis-
ciplinary Science and Technology (CSTST ’08), pp. 384-389, 2008.

B. Stojkoska. Nodes localization in 3D wireless sensor networks. Proceedings of
the 10th Conference for Informatics and Information Technology (CIIT '13),
pp. 301-306, 2013.

J. Fan, B. Zhang, and G. Dai. D3D-MDS: a distributed 3D localization scheme
for an irregular wireless sensor network using multidimensional scaling. Inter-
national Journal of Distributed Sensor Networks, 2015.

http://monet.postech.ac.kr/research.html
https://www.u-blox.com/en/product-search/field_product_category/position-time-152/field_product_class/modules-199/field_product_tech/high-precision-gnss-171
https://www.u-blox.com/en/product-search/field_product_category/position-time-152/field_product_class/modules-199/field_product_tech/high-precision-gnss-171
https://www.u-blox.com/en/product-search/field_product_category/position-time-152/field_product_class/modules-199/field_product_tech/high-precision-gnss-171

BIBLIOGRAPHY 44

[24]

[25]

[26]

27]

28]

[29]

[30]

[31]

32|

[33]

[34]

[35]

N. Saeed, and B. Stojkoska. Robust localization algorithm for large scale 3D
wireless sensor networks. Int. J. Ad Hoc and Ubiquitous Computing, vol. 23,
pp. 82-91, 2016.

S. Patil, and M. Zaveri. MDS and trilateration based localization in Wireless
Sensor Network. Wireless Sensor Network, 3(06), p. 198-208, 2011.

"3db Technologies: Proximity based Access control."
http://www.3db-technologies.com/.
Online; accessed June 7, 2017.

A. Ribeiro, I.D. Schizas, S.I. Roumeliotis, and G. Giannakis. Kalman filtering
in wireless sensor networks. IEEE Control Systems, 30(2), pp. 66-86, 2010.

Y. Zhou. An efficient least-squares trilateration algorithm for mobile robot lo-
calization. Intelligent Robots and Systems 2009, pp. 3474-3479, 2009.

F. Thomas, and L. Ros. Rewvisiting trilateration for robot localization. IEEE
Transactions on robotics, 21(1), pp. 93-101, 2005.

Y. Zhou. A closed-form algorithm for the least-squares trilateration problem.
Robotica, vol. 29, p. 375-389, 2011.

J. Wang, H. Li, X. Li, H. Ma, and Q. Huang. The Accurate Estimations of Dis-
tances Among Nodes in Wireless Sensor Networks in a Complex Environment
Based on an Adaptive Kalman Filter. International Conference on Mechatronics
and Automation 2007, pp. 735-739, 2007.

V.K. Chaurasiya, N. Jain, and G.C. Nandi. A novel distance estimation ap-
proach for 3D localization in wireless sensor network using multi dimensional
scaling. Information Fusion, pp. 5-18, 2014.

"Towa State University: paper by Prof. Diana Cook."
http://www.public.iastate.edu/ "dicook/JSS/paper/code/svd.cl
Online; accessed March 28, 2017.

"Matplotlib: Python plotting."
http://matplotlib.org/. Online; accessed June 12, 2017.

"PlatformIO : open source ecosystem for IoT development."
http://platformio.org/. Online; accessed June 10, 2017.

http://www.3db-technologies.com/
http://www.public.iastate.edu/~dicook/JSS/paper/code/svd.c
http://matplotlib.org/
http://platformio.org/

	Acknowledgment
	Abstract
	Introduction
	Motivation
	Wireless sensor networks
	Related works
	Goals

	System design
	Scientific model
	Design considerations
	System architecture
	MAC protocol
	Algorithms

	Means & methods
	Hardware
	Applied algorithms

	System overview
	Contention access period
	Contention-free period

	Implementation
	Embedded System programming
	Structure
	Mathematical calculations

	Visualisation
	Verification

	Evaluation
	Error behaviour of the algorithms
	Theoretical analysis
	Measurements
	General lessons learned

	Conclusion & Outlook
	Conclusion
	Future work

	Appendix
	Bibliography

