ZSSV Zusammenfassung

Andreas Biri, D-ITET

06.01.15

1. Zeitdiskrete lineare Systeme &

z-Transformation

1.1 Signale

rechtsseitia: $\exists t_0: f(t) = 0 \ \forall t < t_0$ linksseitig: falls f(-t) rechtsseitig

endliche Dauer: falls sowohl links- als auch rechtsseitig

 $f(t) = 0 \quad \forall \ t < 0$ kausal: $f(t) = 0 \quad \forall \ t > 0$ antikausal:

absolut summierbar / stabil:

$$\sum\nolimits_{k=-\infty}^{\infty} |f[k]| < \infty \quad , \qquad \int\nolimits_{-\infty}^{\infty} |f(t)| \ dt \ < \infty$$

quadratisch summierbar / endliche Energie:

$$\sum\nolimits_{k=-\infty}^{\infty} \lvert f[k] \rvert^2 < \infty \,, \qquad \int\nolimits_{-\infty}^{\infty} \lvert f(t) \rvert^2 \; < \infty \,$$

beschränkt:

 $\exists b \in \mathbb{R} : |f(t)| \leq b \quad \forall t$

Für zeitdiskrete und "brave" kontinuierliche Funktionen: absolut summierbar (stabil) \rightarrow quadr. summ. \rightarrow beschränkt

konjugiertes Signal:

 $f^{c}[.] = \overline{f[-k]}$

Spezielle Signale

 $\delta[k] = \left\{ \begin{array}{l} 1 \ , \quad k = 0 \\ 0 \ , \quad sonst \end{array} \right.$ Kronecker-Delta:

 $\sigma[k] = \begin{cases} 1, & k \ge 0 \\ 0, & sonst \end{cases}$ Einheitsschritt:

1.2 Systeme

1) Menge von Variablen mit Konfigurationsraum

2) erlaubten Verhalten

Dynamisches System: Variablen als Funktionen der Zeit

linear: i) Konfigurationsraum ein Vektorraum

ii) erlaubte Verhalten Unterraum d. Vektorraums

zeitinvariant: kann Konfiguration beliebig verschieben deterministisch: Ausgangssignal Funktion d. Eingangssignal

1.3 LTI-Systeme

LTI: linear time-invariant system / "lineare Filter"

$$u[.\,] = \sum u[k] \, \delta[.\,-k] \ , \qquad u(t) = \int u(\tau) \, \delta(\,t-\tau) \, d\tau$$

$$y[.] = \sum u[k] h[.-k]$$
, $y(t) = \int u(\tau) h(t-\tau) d\tau$

Eingangssignal	Ausgangssignal	Begründung
$\delta[.]$	h[.]	Definition von $h[.]$
$\delta[k]$	h[k]	Zeitinvarianz
$u[k] \cdot \delta[k]$	$u[k] \cdot h[k]$	Linearität (Homogenität)
$u[.] = \sum_{k \in \mathbb{Z}} u[k] \delta[k]$	$ \sum_{k \in \mathbb{Z}} u[k] h[k] $	Linearität (Superpositionsprinzip)

Satz 1.2: Kausales System, falls Stossantwort h kausal

Satz 1.3: BIBO-stabil iff Stossantwort h stabiles Signal

1.4 Faltung

$$(f * g)[n] = \sum f[k] g[n-k] = \sum f[n-k] g[k]$$
$$(f * g)(t) = \int f(\tau) g(t-\tau) d\tau = \int f(t-\tau) g(\tau) d\tau$$

	f	g	f * g
1	rechtsseitig	rechtsseitig	rechtsseitig
2	kausal	kausal	kausal
3	irgend etwas	von endlicher Dauer	(wohldefiniert)
4	beschränkt	absolut summierbar	beschränkt
5	absolut summierbar	absolut summierbar	absolut summierbar
6	quadratisch summierbar	absolut summierbar	quadratisch summierbar
7	quadratisch summierbar	quadratisch summierbar	(wohldefiniert)

1.5 formale z-Transformation

$$F(z) = \sum_{k=-\infty}^{\infty} f[k] z^{-k}$$

Zwei Interpretationsarten dieses Ausdrucks:

- formale z-Trafo: rein formaler Ausdruck (z undefiniert)
- (analytische) z-Trafo: komplexwertige Funktion

Verschiebung nach links ("früher"): Multipliziere mit z^m

Kausaler Teil: $F(z) \mod z = \sum_{k=0}^{\infty} f[k] z^{-k}$

1.6 Inverse Signale & inverse Filter

$$G(z)$$
 invers $zu F(z) : F(z)G(z) = 1$, $f * g = \delta$

Satz 1.6: Es seien g[.] und h[.] invers zu f[.] , $\alpha + \beta = 1$ Dann ist auch das Signal $\alpha g[.] + \beta h[.]$ invers zu f[.] Folglich gibt es unendlich viele Inversen eines Signals.

Satz 1.7: Falls f[.] rechtsseitig und nicht überall Null, gibt es genau ein rechtsseitiges zu f[.] inverses Signal.

Berechnen der (eindeutigen) Inversen

$$F(z) = z^{-m}(a_0 + a_1 z^{-1} + \cdots), \ G(z) = z^{-n}(b_0 + b_1 z^{-1} + \cdots)$$

$$n = -m, \qquad b_0 = 1/a_0$$

$$b_k = -\frac{1}{a_0} \sum_{i=1}^{k-1} a_{k-i} b_i$$

Rechtsseitiges und linksseitiges Signal

i) Rücktransformation eines Pols

$$G(z) = \frac{1}{1 - \alpha z^{-1}} = \frac{z}{z - \alpha}$$

Rechtsseitiges Signal (stabil für $|\alpha| < 1$)

$$g[k] = \begin{cases} \alpha^k & , & k \ge 0 \\ 0 & , & k < 0 \end{cases}$$

Linksseitiges Signal (stabil für $|\alpha| > 1$)

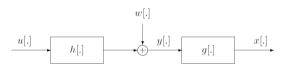
$$g[k] = \begin{cases} 0, & k \ge 0 \\ -\alpha^k, & k < 0 \end{cases}$$

ii) Rücktransformation einer rationalen Funktion 1/F(z): Polynomdivision liefert entsprechendes Signal

Rechtsseitig:
$$\frac{a z^m + (niedrigere \ Ord.)}{b z^n + (niedrigere \ Ord.)} = \frac{a}{b} z^{m-n} + (niedriger)$$

Linksseitig:
$$\frac{a z^m + (h\"{o}here\ Ordnung)}{b z^n + (h\"{o}here\ Ordnung)} = \frac{a}{b} z^{m-n} + (h\"{o}her)$$

1.7 Egalisation, Entfaltung, Entzerrung



$$y[.] = u[.] * h[.] + w[.]$$

Versuche durch Inverse, u[.] aus y[.] zu bestimmen:

- Ansatz:

- H(z) G(z) = 1
- Mit Verzögerung $L \geq 0$:
- $H(z) G(z) \approx z^{-L}$
- i) Suche stabiles Inverses (entweder links- oder rechtss.)
- ii) Erzeuge kausales Schätzfilter G(z) durch Abschneiden:

$$G(z) = z^{-L} G_{L/r}(z) \mod z$$

$$H(z) G(z) = z^{-L} + E(z)$$

Dabei entstehender Fehler:

$$E(z) = -(-2)^{-L}$$

Decision-feedback equalizer (DFE)

Anwendbar, falls Signal nur diskrete Werte annimmt

 G_f : Vorwärts-Filter, G_h : Rückwärtsfilter

$$H(z) = H_1(z) + z^{-L-1} H_2(z)$$

$$H_1(z) = \sum_{k=0}^{L} h[k] z^{-k}$$
, $H_2(z) = \sum_{k=L+1}^{\infty} h[k] z^{-k} z^{L+1}$

$$G_b(z) = -H_2(z)$$
, $G_f(z) = z^{-L} F(z) \mod z$

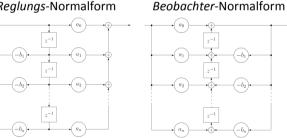
wobei F(z) ein stabiles inverses Filter zu $H_1(z)$ ist

1.8 Normalformen und Faltungsalgorithmen

Rational: Funktion ist ein Quotient von zwei Polynomen Zählergrad nicht höher als Nenner

$$H(z) = \frac{a_0 + a_1 z^{-1} + \dots + a_n z^{-n}}{1 + b_1 z^{-1} + \dots + b_n z^{-n}} = \frac{a_0 z^n + a_1 z^{n-1} + \dots + a_n}{z^n + b_1 z^{n-1} + \dots + b_n}$$

Reglungs-Normalform



1.9 Potentzreihen & Laurentreihen

Absolute Konvergenz: $\sum_{k=0}^{\infty} |c_k| < \infty$

Komplexe Potenzreihe mit Konvergenzradius:

$$C(x) = \sum_{k=0}^{\infty} c_k x^k$$
, $r = \left(\lim_{k \to \infty} \sup |c_k|^{\frac{1}{k}}\right)^{-1}$

Inverse Potenzreihe (konvergiert ausserhalb v. r)

$$B(x) = \sum_{k=1}^{\infty} b_k x^{-k}$$
, $r = \lim_{k \to \infty} \sup |b_k|^{\frac{1}{k}}$

Laurent-Reihen

$$A(x) = \sum_{k=-\infty}^{\infty} a_k x^k = \sum_{k=1}^{\infty} a_{-k} x^{-k} + \sum_{k=0}^{\infty} a_k x^k$$

Konvergiert in Kreisring: $\{x \in \mathbb{C} : r_1 < |x| < r_2\}$

$$r_1 = \lim_{k \to \infty} \sup |a_{-k}|^{\frac{1}{k}}, \qquad r_2 = \left(\lim_{k \to \infty} \sup |a_k|^{\frac{1}{k}}\right)^{-1}$$

1.10 Die z-Transformation

$$F(z) = \sum_{k=-\infty}^{\infty} f[k] z^{-k}$$
, $ROC(f) = \{r_1 < |z| < r_2 \}$

$$r_1 : von \sum_{k=0}^{\infty} f[k] z^{-k}$$
, $r_2 : von \sum_{k=0}^{\infty} f[-k] z^k$

Falls ROC leer, existiert die z-Transformierte nicht.

Jedes Signal f von endlicher Dauer besitzt $ROC = \mathbb{C} \setminus \{0\}$

Satz 1.9: ROC enthält Einheitskreis \Rightarrow ff.] ist stabil f[.] stabil \Rightarrow Einheitskreis liegt in ROC (oder Rand)

Zeitverschiebung: $H(z) = z^m F(z) \rightarrow ROC(h) = ROC(f)$ Zeitumkehrung: $H(z) = F(z^{-1}) \to \{1/r_2 < |z| < 1/r_2 \}$

Anfangswert-Eigenschaft für kausale Signale

$$f[0] = \lim_{|z| \to \infty} F(z)$$

Endwert-Eigenschaft für rationale rechtsseitige Signale

$$\lim_{k \to \infty} f[k] = \lim_{z \to 1} (z - 1) F(z)$$

Satz 1.12: Umkehrformel der z-Transformation

$$f[k] = \frac{1}{2\pi} \int_{0}^{2\pi} F(e^{i\Omega}) e^{i\Omega k} d\Omega$$

1.11 Rationale z-Transformation

Eine rationale Funktion ist eine Funktion der Form

$$F(z) = \frac{a_0 z^n + a_1 z^{n-1} + \dots + a_n}{b_0 z^n + b_1 z^{n-1} + \dots + b_n}$$

kausal: Zählergrad ist nicht höher als der Nennergrad

$$F(z) = \sum\nolimits_{i=1}^{n} \frac{A_i \, z}{z - p_i} \rightarrow f[z] = \sum \begin{cases} rechtss., & |p_i| < 1 \\ linkss., & |p_i| > 1 \end{cases}$$

F(z)	ROC(f)	f[.]
$\frac{z}{z-p}$	z > p	$f[k] = \begin{cases} 0, & k < 0 \\ p^k, & k \ge 0 \end{cases}$
<i>z</i> − <i>p</i>	0 < z < p	$f[k] = \begin{cases} -p^k, & k < 0\\ 0, & k \ge 0 \end{cases}$
$\frac{Az}{z-p} + \frac{\overline{A}z}{z-\overline{p}}$	z > p	$f[k] = \begin{cases} 0, & k < 0 \\ 2 A p ^k \cos(\Omega k + \varphi), & k \ge 0 \end{cases}$
$=2z \cdot \frac{z\operatorname{Re}(A) - \operatorname{Re}(A\overline{p})}{z^2 - 2z\operatorname{Re}(p) + p ^2}$	0 < z < p	$f[k] = \begin{cases} -2 A p ^k \cos(\Omega k + \varphi), & k < 0 \\ 0, & k \ge 0 \end{cases}$

f[.] ist stabil $\Leftrightarrow ROC(f)$ enthält den Einheitskreis

1.14 Spektrum von zeitdiskreten Signalen

$$F(e^{i\Omega}) = F(z)|_{z=e^{i\Omega}} = \sum_{k=0}^{\infty} f[k] e^{-i\Omega k}$$

Spektrum = Transformierte auf Einheitskreis. 2π -periodisch

Satz 1.13: f[.] stabil → Spektrum wohldefiniert/konvergiert

 $c_k = f[-k]$: Fourier-Koeffizienten des Spektrums $F(e^{i\Omega})$

$$f^c[.\,] \to F^c(z) = \, \overline{F(\bar{z}^{-1})} \to F^c(e^{i\Omega}) = \, \overline{F(e^{i\Omega})}$$

Satz 1.14: Ein stabiles kompl. zeitdisk. Signal f[.] ist *reell*:

$$F(e^{-i\Omega}) = \overline{F(e^{i\Omega})}$$

Spezialfall: Periodische Signale (r=1)

$$f[k] = e^{i\Omega_0 k} \to F(e^{i\Omega}) = 2\pi \sum_n \delta(\Omega - \Omega_0 - 2\pi n)$$

2. Zeitdiskret & zeitkontinuierlich

2.1 Laplace- und Fourier-Transformation

Laplace-Transformierte eines zeitkontinuierlichen Signals

$$F(s) = \int_{-\infty}^{\infty} f(t) e^{-st} dt$$

$$ROC(f) = \{ s \in \mathbb{C} : r_1 < Re(s) < r_2 \}$$

rechtsseitia: $ROC(f) = \{ s \in \mathbb{C} : Re(s) > r \}$

 $ROC(f) = \{ s \in \mathbb{C} : Re(s) < r \}$ linksseitig:

stabil: ROC(f) enthält die imaginäre Achse

Satz 2.2: Ein rechtsseitiges Signal f(.) ist stabil iff i) Zählergrad nicht grösser als Nennergrad

ii) alle Pole von F(s) in offenen linken Halbebene

Satz 2.3: ROC(f) enthält imaginäre Achse \Rightarrow f(.) stabil f(.) stabil $\Rightarrow ROC(f)$ enthält imag. Achse (od. Rand)

Fourier-Transformation: Laplace auf imaginärer Achse

$$F(i\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(i\omega) e^{i\omega t} d\omega$$

Spektrum eines Signals = Fourier-Transformierte Frequenzgang: Fourier-Transformierte der Stossantwort

Satz 2.4: komplexes zeitkont. Signal f(.) ist reell iff

$$F(-i\omega) = \overline{F(i\omega)}$$

Satz 2.5: Sei f(.) ein stabiles komplexes Signal mit

$$F(s) = c * \frac{\prod(s-a)}{\prod(s-b)}$$

f(.) ist reell, falls die Pole & Nullstellen entweder reell sind oder in konjugiert komplexen Paaren auftreten.

2.2 Umwandlung zeitdiskret → zeitkont.

Allgemeiner Ansatz:

$$y(t) = \sum_{k \in \mathbb{Z}} x[k] h(t - kT)$$

Bildung eines formal zeitkontinuierlichen Signals

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} x[k] \, \delta(t - kT)$$

$$\rightarrow y(t) = \tilde{x}(t) * h(t)$$
, $Y(s) = \tilde{X}(s) H(s)$

Satz 2.6: Laplace-Transformierte von $\tilde{x}(t)$

$$\tilde{X}(s) = X(z)|_{z=a^{ST}}, \qquad \tilde{X}(i\omega) = X(e^{i\omega T})$$

Spektrum eines "formal zeitkontinuierlichen" Signals entsprich dem periodischen Spektrum d. zeitdisk. Signals

Einsatz eines Tiefpasses als Filter

Unterdrückung aller Perioden d. Spektrums ausser Grundperiode

$$H(i\omega) = \begin{cases} 1 & , & |\omega| < \omega_c \\ 0 & , & |\omega| > \omega_c \end{cases}, \qquad h(t) = \frac{\sin(\omega_c t)}{\pi t}$$

 $\omega_c = \frac{\pi}{T} \left(f_c = \frac{1}{2T}, \ \omega_c = 2\pi f_c \right)$ Spezialfall:

$$h(t) = \frac{1}{T} \frac{\sin(\pi t/T)}{\pi t/T} = \frac{1}{T} \operatorname{sinc}(t/T)$$

$$\to y(nT) = \frac{1}{T} x[n]$$

(Übereinstimmung an Abtastzeitpunkten)

Halteglied als Filter

$$h(t) = \begin{cases} 1, & 0 \le t < T \\ 0, & sonst \end{cases}$$

2.3 Abtastung

 $Ideale\ regelm\"{a}ssige\ Abtastung\ mit\ Abtastperiode\ T$

$$x_s[k] = T x(kT - \tau)$$

Satz 2.7: Die z-Transformierte des abgetasteten Signals

$$g_s[k] = Tg(kT) \rightarrow G_s(z) = \sum_{s: e^{sT} = z} G(s)$$

oder äquivalent dazu ($\rho,\Omega\in\mathbb{R}$, $\ln(\rho)/T\in ROC(g)$)

$$G_s(\rho e^{i\Omega}) = \sum G(\ln(\rho)/T + i(\Omega + n2\pi)/T)$$

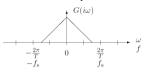
Für die Spektren gilt (falls sie existieren)

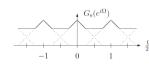
$$G_S(e^{i\omega T}) = \sum G(\,i(\,\omega + n2\pi/T)\,)$$

oder mit Abtastfrequenz $f_S = 1/T$ und $\omega = 2\pi f$,

$$G_{S}(e^{i2\pi f/f_{S}}) = \sum G(i2\pi (f + nf_{S}))$$

Das Spektrum $G_S(e^{i\Omega})$ ($\Omega=\omega T$) eines abgetasteten Signals entspricht der Summe aller um ganzzahlige Vielfache von $\frac{2\pi}{T}$ verschobenen Kopien von $G(i\omega)$





Frequenz abgetasteter Signale: $\Omega = \omega T = 2\pi f/f_s$

Satz 2.8: Nyquist-Shannon Abtasttheorem

Erfüllt das Signal die Nyquist-Bedingung

$$G(i\omega) = 0$$
, $|\omega| \ge \frac{\pi}{T}$ $\left(G(i2\pi f) = 0, |f| \ge \frac{f_S}{2} \right)$

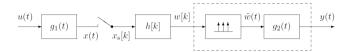
kann aus Abtastwerten $g_S[k] = Tg(kT)$ vollständig (ohne **Aliasing**) rekonstruieren (*Abtastfrequenz* $f_S = 1/T$):

$$G(i\omega) = G_S(e^{i\omega T})$$
 $f\ddot{u}r |\omega| < \frac{\pi}{T}$

$$g(t) = \sum_{k} g(kT) \operatorname{sinc}\left(\frac{t - kT}{T}\right)$$

2.4 Zeitdiskr. Filterung v. zeitkont. Signalen

Standard Signalverarbeitungssystem



i) Filterung: $x(t) = u(t) * g_1(t)$

ii) Abtastung: $x_s[k] = T x(kT)$

iii) Diskrete Filterung: $w[k] = x_s[k] * h[k]$

iv) Kontinuierlich machen: $y(t) = \sum_{k} w[k] g_2(t - kT)$

Satz 2.9: Falls sowohl $G_1(i\omega)$ & $G_2(i\omega)$ die Nyquist-Bedingung erfüllen, ist das Gesamtsystem *zeitinvariant* mit Frequenzgang $G_1(i\omega)$ $H(e^{i\omega T})$ $G_2(i\omega)$

 \Rightarrow äquivalent zu zeitkont. Filter mit Frequ.gang $H(e^{i\omega T})$

2.6 Dezimation , Interpolation & Umrechnung der Abtastrate

Interpolation: Erhöhung der Abtastfrequenz (ganzzahlig) zero-stuffing: Einfüllen von n-1 Nullen zwischen Werten

$$G_z(z) = G(z^n) \rightarrow G_z(e^{i\Omega}) = G(e^{in\Omega})$$

danach spektrale Anteile ausserhalb $|\Omega| < \pi/n$ wegfiltern

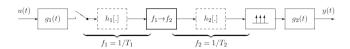
Dezimation: Verringerung der Abtastfrequenz (ganzzahlig)

Satz 2.10: Dezimationssatz $g_d[k] = n g[nk]$

$$G_d(z) = \sum_{z_1:z_1^n = z} G(z_1) , \qquad G_d(e^{i\Omega}) = \sum_{m=0}^{n-1} G\left(e^{\frac{i(\Omega + m2\pi)}{n}}\right)$$

Wechsel der Abtastfrequenz

Wechsel um rationalen Faktor durch Kombination von Interpolation und Dezimation



Satz 2.11: Es seien die folgenden drei Bedingungen erfüllt:

- $-|G_1(i2\pi f)| = 0$ für $|f| \ge f_1/2$
- $-|G_2(i2\pi f)| = 0$ für $|f| \ge f_2/2$
- Abtastratenkovention $f_1 \to f_2$ erfolgt mit Zwischenrate $f_3 = n \ f_1 = m \ f_2$ und mit $|H(e^{i\Omega})| = 0$, $\min\left\{\frac{\pi}{n}, \frac{\pi}{m}\right\} \le |\Omega| \le \pi$

Dann ist das Gesamtsystem zeitinvariant mit Frequenzgang

$$G_1(i\omega) H_1(e^{i\omega T_1}) H(e^{i\omega T_3}) H_2(e^{i\omega T_2}) G_2(i\omega), \qquad T_i = \frac{1}{f_i}$$

2.7 FIR-Filter und Fensterfunktionen

FIR-Filter: finite impulse response filter IIR-Filter: infinite impuls response filter

Tiefpass

Idealer zeitdiskreter Tiefpass

$$H(e^{i\Omega}) = \begin{cases} 1, & |\Omega| < \Omega_c \\ 0, & \Omega_c \le |\Omega| \le \pi \end{cases}, \qquad h[k] = \frac{\sin(\Omega_c k)}{\pi k}$$

Problem: Weder kausal noch stabiles Filter

Lösung: Abschneiden/Dämpfen von Koeffizienten mit einer Fensterfunktion $h[k]w[k] \rightarrow Faltung \ der \ Spektren$

Kausaler Tiefpass

$$g\left[k + \frac{N}{2}\right] = \frac{h[k] w[k]}{\sum_{n} h[n] w[n]}$$

Verschiebung bewirkt Kausalität, Nenner erhält Neutralität

Fensterfunktionen

Rechteckfenster: nicht geeignet, sehr langsames Abklingen

$$w[k] = \begin{cases} 1 & , |k| \le N/2 \\ 0 & , |k| \le N/2 \end{cases}$$

Hanning-Filter (raised-cosine window): Ordnung N

$$w[k] = \begin{cases} \frac{1}{2} \left(1 + \cos\left(\frac{2\pi k}{N+2}\right) &, |k| \le N/2 \\ 0 &, |k| > N/2 \end{cases}$$

Bandpässe

Frequenzselektive Filter mit Fensterfunktionen

Idealer Bandpass: $0 \le \Omega_1 \le \Omega_2 \le \pi$

$$H(e^{i\Omega}) = \left\{ \begin{array}{cc} & 1 \ , \ \Omega_1 < |\Omega| < \Omega_2 \\ & 0 \ , \ |\Omega| \leq \Omega_1 \ oder \, \Omega_2 \leq |\Omega| \leq \pi \end{array} \right.$$

$$h[k] = \frac{\sin(\Omega_2 k) - \sin(\Omega_1 k)}{\pi k}$$
, $h[0] = \frac{\Omega_2 - \Omega_1}{\pi}$

Kausaler Bandpass: $G(e^{i\Omega})$

$$\left|G(e^{i\Omega})\right|_{\Omega=\frac{\Omega_1+\Omega_2}{2}}=1$$

$$g\left[k + \frac{N}{2}\right] = \frac{h[k] w[k]}{|\sum_{n} h[n] w[n] e^{-in(\Omega_1 + \Omega_2)/2}|}$$

Linearer Phasengang

Für FIR-Filter, die mit dieser Methode entworfen werden, gilt im Durchlassbereich

$$G(e^{i\Omega}) \approx e^{-i\Omega N/2} = z^{-N/2} \mid_{z=e^{i\Omega}}$$

und somit eine reine Verzögerung um N/2 Zeiteinheiten. Dies ist oft wünschenswert und ein Hauptgrund für FIR

2.7 Zeitkont. & zeitdiskrete IIR-Filter

- 1) Entwurf eines zeitkontinuierlichen Filters
- 2) Transformation in ein zeitdiskretes Filter

Butterworth-Filter der Ordnung N

$$H(s) = \frac{1}{\prod_{k=1}^{N} (1 - s/p_k)}$$

$$p_k = \omega_c \, e^{\,i\frac{\pi}{2N}(\,2k\,+\,N\,-\,1)}$$

3-dB-Frequenz: $f_c = \omega_c/2\pi$

Für ein Filter mit Ordnung N gerade gilt:

$$H(s) = \prod_{k=1}^{N/2} \frac{1}{1 - 2\cos\left(\frac{\pi}{2N}\left(2k + N - 1\right)\right)\frac{s}{\omega_c} + \left(\frac{s}{\omega_c}\right)^2}$$

Satz 2.12: Amplitudengang $|H(i\omega)|$ gegeben durch

$$|H(i\omega)|^2 = \frac{1}{1 + (\omega/\omega_s)^{2N}}$$

Bilineare Transformation

$$G(z) = H(s) \mid_{s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}}$$
$$G(e^{i\Omega}) = H(i\omega) \mid_{\omega = \frac{2}{T} \tan(\Omega/2)}$$

Satz 2.13: Abbildung $z \rightarrow s$

$$s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}, \qquad z = \frac{1 + sT/2}{1 - sT/2}$$

Frequenztransformation

$$\Omega = 2 \tan^{-1} \left(\frac{\omega T}{2} \right), \qquad \omega = \frac{2}{T} \tan \left(\frac{\Omega}{2} \right)$$
$$\frac{\omega}{\omega'} = \frac{\tan(\Omega/2)}{\tan(\Omega'/2)}$$

3. DFT & FFT

	Zeitachse	Frequenzachse
Fourier-Transformation	\mathbb{R}	\mathbb{R}
Fourier-Reihe	$\mathbb{R} \mod 2\pi$	\mathbb{Z}
zeitdiskrete Fourier-Transformation	\mathbb{Z}	$\mathbb{R} \mod 2\pi$
diskrete Fourier-Transformation (DFT)	$\mathbb{Z} \bmod N$	$\mathbb{Z} \bmod N$

3.2 Die diskrete Fourier-Transformation

Sei α eine komplexe Zahl: $\alpha^N = 1$; $\alpha^n \neq 1$, 0 < n < N

$$F(z) = \sum_{k=0}^{N-1} f[k] z^{-k} = (f[0], f[1], \dots, f[N-1])^{T}$$

$$F[n] = F(\alpha^n) = \sum_{k=0}^{N-1} f[k] \alpha^{-kn}$$

Meistens wird $\alpha = e^{i2\pi/N}$ gewählt:

$$F[n] = F(e^{i\Omega}) \mid_{\Omega = 2\pi n/N}$$

DFT berechnet Abtastwerte F[n] des Spektrums von f[.]

Transformation als Matrix: $\alpha^{-l} = \alpha^{N-l}$

$$\begin{pmatrix} F[0] \\ F[1] \\ F[2] \\ \vdots \\ F[N-1] \end{pmatrix} = \begin{pmatrix} \alpha^0 & \alpha^0 & \alpha^0 & \cdots & \alpha^0 \\ \alpha^0 & \alpha^{-1} & \alpha^{-2} & \cdots & \alpha^{-(N-1)} \\ \alpha^0 & \alpha^{-2} & \alpha^{-4} & \cdots & \alpha^{-2(N-1)} \\ \vdots & & & \vdots \\ \alpha^0 & \alpha^{-(N-1)} & \alpha^{-2(N-1)} & \cdots & \alpha^{-(N-1)(N-1)} \end{pmatrix} \cdot \begin{pmatrix} f[0] \\ f[1] \\ f[2] \\ \vdots \\ f[N-1] \end{pmatrix}$$

Satz 3.1: Die DFT ist invertierbar mit der Umkehrformel

$$f[k] = \frac{1}{N} \sum_{n=0}^{N-1} F[n] \alpha^{kn}$$

Satz 3.2: Sei N eine positive ganze Zahl, $\beta \in \mathbb{C}: \beta^N = 1$

$$\sum_{n=0}^{N-1} \beta^n = \left\{ \begin{array}{cc} N & falls \ \beta = 1 \\ 0 & sonst \end{array} \right.$$

Satz 3.3: Ein komplexer Vektor ist reell genau dann, wenn:

$$F[N-n] = \overline{F[n]}$$
 , $0 < n < N$; $F[0] = \overline{F[0]}$

(In zyklischer Notation mit $i \mod N$: $F[-n] = \overline{F[n]}$)

Berechnung mit Horner-Schema

$$F[n] = F(\alpha^n) \rightarrow n \text{ setzen: } \beta = \alpha^{-n} = \alpha^{N-n}$$

$$F[n] = F(\beta^{-1}) = f[0] + \beta(f[1] + \beta(f[2] + \cdots))$$

DFT-Matrizen für N = 4

$$\begin{pmatrix} F[0] \\ F[1] \\ F[2] \\ F[3] \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{pmatrix} \cdot \begin{pmatrix} f[0] \\ f[1] \\ f[2] \\ f[3] \end{pmatrix}$$

$$\begin{pmatrix} f[0] \\ \\ f[0] \\ \\ f[0] \\ \\ f[0] \\ \\ f[0] \\$$

$$\begin{pmatrix} f[0] \\ f[1] \\ f[2] \\ f[3] \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix} \cdot \begin{pmatrix} F[0] \\ F[1] \\ F[2] \\ F[3] \end{pmatrix}$$

3.3 Aliasing in der Zeit

Reduktion der Exponenten in der formellen z-Trafo:

$$F(z) \mod(z^N - 1) = \sum_{k \in \mathbb{Z}} f[k] z^{-(k \mod N)}$$

Satz 3.4: N positive ganze Zahl; $\alpha \in \mathbb{C}$, $\alpha^N = 1$

$$F(z) \mod (z^N - 1)|_{z=\alpha^n} = F(\alpha^n)$$

Abtastung des Spektrums erzeugt Aliasing in der Zeit: An Abtastwerten ist das Spektrum d. zeitdiskr. Signals f gleich dem Spektrum (d.h. der DFT) des Vektors mit der formalen z-Transformierten $F(z) \ mod \ (z^N-1)$

3.4 Zyklische Faltung

$$h[n] = \sum_{k=0}^{n} f[k]g[n-k] + \sum_{k=n+1}^{N-1} f[k]g[N+n-k]$$

Satz 3.5: formale z-Trafo der zyklischen Faltung von $f \circledast g$

$$F(z)G(z) \mod(z^N-1)$$

4. Wahrscheinlichkeitstheorie

4.2 Definition Wahrscheinlichkeitssystem

Definition 4.1 (Axiome von Kolmogorov). Ein Wahrscheinlichkeitssystem ist ein Tripel (Ω, \mathcal{E}, P) , bestehend aus einer Menge Ω , einer Menge \mathcal{E} von Teilmengen von Ω und einer Funktion $P: \mathcal{E} \to \mathbb{R}$. Die Menge \mathcal{E} muss eine Sigma-Algebra sein, d.h. es muss folgendes gelten:

- E1. $\Omega \in \mathcal{E}$.
- E2. Für jedes $A \in \mathcal{E}$ ist auch die Komplementmenge $A^c \stackrel{\triangle}{=} \Omega \setminus A$ in \mathcal{E} .
- E3. Falls A_1, A_2, A_3, \dots Elemente von \mathcal{E} sind, ist auch $A_1 \cup A_2 \cup A_3 \cup \dots$ ein Element von \mathcal{E} . Die Funktion P muss ein Wahrscheinlichkeitsmass sein. d.h. es muss folgendes gelten:
- P1. Für jedes $A \in \mathcal{E}$ gilt 0 < P(A) < 1.
- P2. $P(\Omega) = 1$.
- P3. Falls A_1, A_2, A_3, \dots Elemente von $\mathcal E$ sind mit $A_n \cap A_m = \emptyset$ für $n \neq m$, dann gilt $P(A_1 \cup A_2 \cup \dots) = \sum_{n=1}^{\infty} P(A_n)$.

Elemente von Ω : "Ergebnisse", Elemente von ε : "Ereignisse"

- E4 ∅ ∈ 8
- E5. Falls A_1, A_2, A_3, \ldots Elemente von \mathcal{E} sind, ist auch $A_1 \cap A_2 \cap A_3 \cap \ldots$ ein Element von \mathcal{E} .
- P4. $P(A^c) = 1 P(A)$.
- P5. $P(\emptyset) = 0$.

Unabhängigkeit: Zwei Ereignisse A, B sind unabhängig, falls

$$P(A \cap B) = P(A) * P(B)$$

4.3 Diskrete Zufallsgrössen/Zufallsvariablen

 $\textit{Diskrete Zufallsgr\"{o}sse:} \ \mathsf{Funktion} \ X: \ \varOmega \to S$ $\mathsf{F\"{u}r jedes Ergebnis} \ \omega \in \ \varOmega \ \mathsf{hat} \ X \ \mathsf{einen eindeutigen Wert}$

Def. 4.4: Zwei diskrete Zufallsgrössen X,Y sind unabhängig:

$$P(X = x \text{ und } Y = y) = P(X = x) * P(Y = y)$$

Verbundwahrscheinlichkeit: P(X = x und Y = y)

$$= P(\{\omega \in \Omega : X(\omega) = x\} \cap \{\omega \in \Omega : Y(\omega) = y\})$$

$$P(X = x) = \sum_{y} P(X = x \text{ und } Y = y)$$

Alle Zufallsgrössen sind Funktionen des gleichen Ergebnisses!

4.4 Reelle Zufallsgrössen

Reelle Zufallsgrösse: Funktion $X: \Omega \to \mathbb{R}$

Satz 4.1: Wenn X eine reelle Zufallsgrösse ist, dann sind für jedes $r \in \mathbb{R}$ alle folgenden Mengen Ereignisse:

$$\{ \omega \in \Omega : X(\omega) > r \}, \quad \{ \omega \in \Omega : X(\omega) < r \}$$

 $\{ \omega \in \Omega : X(\omega) \ge r \}, \quad \{ \omega \in \Omega : X(\omega) = r \}$

Verteilungsfunktion

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(r) dr$$

$$P(a < X \le b) = F_X(b) - F_X(a) = \int_{a+}^{b+} f_X(x) dx$$

- V1. Monoton nicht abfallend: Für s < r gilt $F(s) \le F(r)$
- V2. $\lim_{r\to-\infty} F(r) = 0$ und $\lim_{r\to\infty} F(r) = 1$.
- V3. Rechtsseitig stetig: $\lim_{s\to r^+} F(s) = F(r)$.
- V4. $\lim_{s \to r^-} F_X(s) = P(X < r) = F_X(r) P(X = r)$.

Wahrscheinlichkeitsdichte

$$f_X(x) = \frac{d}{dx} F_X(x)$$
, $\int_{-\infty}^{\infty} f_X(x) dx = 1$

 $P(X = x_0) \neq 0$: Sprung in F_X und Dirac-Stoss in f_X

4.5 Verbundswahrscheinlichkeitsdichte

Verbundsverteilungsfunktion

$$F_{X_1, X_2, \dots}(x_1, x_2, \dots) = P(X_1 \le x_1 \text{ und } X_2 \le x_2 \text{ und } \dots)$$

Verbundswahrscheinlichkeitsfunktion

$$f_{X_1,...,X_n}(x_1,...,x_n) = \frac{d^n F_{X_1,...,X_n}}{dx_1...dx_n} (x_1,...,x_n)$$

$$f_{X_i}(x_i) = \int_{-\infty}^{\infty} f_{X_i,X_j}(x_i,x_j) dx_j$$

(statistisch) unabhängig:
$$F_{X_1,...,X_n}(x_1,...,x_n) = F_{X_1}(x_1) * ... * F_{X_n}(x_n)$$

 $f_{X_1,...,X_n}(x_1,...,x_n) = f_{X_1}(x_1) * ... * f_{X_n}(x_n)$

4.6 Funktionen von Zufallsgrössen

$$\Omega \to \mathbb{R} : \omega \mapsto g(X(\omega))$$
, $Y = g(X)$

$$F_Y(r)=P(Y\leq r)=P(g(X)\leq r)=P\big(X\leq g^{-1}(r)\big)=F_X\big(g^{-1}(r)\big)$$

4.7 Erwartungswert

$$E[X] = m_X = \int_{-\infty}^{\infty} x \, f_X(x) \, dx = \sum_{x \in S} x \, P(X = x)$$

Satz 4.2: Für einen reellen Vektor $X = (X_1, \dots, X_n)^T$ gilt

$$E[X] = (E[X_1], ..., E[X_n])^T, m_X = (m_{X_1}, ..., m_{X_n})^T$$

Satz 4.3: Sei *X* eine reelle Zufallsgrösse und Y = g(X)

$$E[Y] = \int_{-\infty}^{\infty} g(x) f_X(x) dx = \sum_{x \in S} g(x) P(X = x)$$

Satz 4.4: Linearität des Erwartungswertes, $a,b \in \mathbb{C}$

$$E[aX + bY] = aE[X] + bE[Y], \qquad E[\bar{Z}] = \overline{E[Z]}$$

Satz 4.6: Falls X und Y unabhängig sind:

$$E[\,X*Y] = E[X]*E[Y]\,, \qquad E[\,X*\overline{Y}] = E[X]*\overline{E[Y]}$$

unabhängig \Rightarrow unkorreliert

4.8 Varianz und Korrelation

n-tes Moment von X: $E[X^n] = \int_{-\infty}^{\infty} x^n f_X(x) dx$

Varianz

$$Var(X) = E[(X - m_X)^2] = E[X^2] - m_X^2$$

Für komplexe Zufallsgrösse Z = X + iY

$$Var(Z) = Var(X) + Var(Y) = E[|Z|^2] - |m_Z|^2$$

Korrelation: $E[X \overline{Y}]$

orthogonal: $falls\ Korrelation\ E[X\ \overline{Y}] = 0$

Kovarianz

$$Cov(X,Y) = E[(X - m_X)\overline{(Y - m_Y)}] = E[X \overline{Y}] - m_X \overline{m_Y}$$

unkorreliert: $Cov(X,Y) = 0 \iff E[X \overline{Y}] = E[X] \overline{E[Y]}$

Satz 4.7: Es seien X und Y komplexe Zufallsgrössen

unkorreliert
$$\Rightarrow$$
 $Var(X + Y) = Var(X) + Var(Y)$
orthogonal \Rightarrow $E[|X + Y|^2] = E[|X|^2] + E[|Y|^2]$

Satz 4.8: Für reelle oder komplexe Zufallsgrössen gilt

$$|Cov(X,Y)|^2 \le Var(X) * Var(Y)$$

Matrixtransformationen

Transponierte: $A^T: (A^T)_{i,j} = A_{j,i}$ Hermetisch-Transponierte: $A^H: (A^H)_{i,i} = \overline{A_{l,i}}$

Korrelationsmatrix positiv-semidefinit: $x^H R x \ge 0 \forall x$

$$R_X = E[XX^H] = R_X^H$$

$$R_X = \begin{pmatrix} E[X_1\overline{X_1}] & E[X_1\overline{X_2}] & \dots & E[X_1\overline{X_n}] \\ E[X_2\overline{X_1}] & E[X_2\overline{X_2}] & \dots & E[X_2\overline{X_n}] \\ \vdots & \vdots & \dots & \vdots \\ E[X_n\overline{X_1}] & E[X_n\overline{X_2}] & \dots & E[X_n\overline{X_n}] \end{pmatrix}$$

Kovarianzmatrix

$$V_X = E[(X - m_X)(X - m_X)^H] = R_X - m_X m_X^H$$

$$V_X = \begin{pmatrix} E[(X_1 - m_{X_1})\overline{(X_1 - m_{X_1})}] & \dots & E[(X_1 - m_{X_1})\overline{(X_n - m_{X_n})}] \\ \vdots & \dots & \vdots \\ E[(X_n - m_{X_n})\overline{(X_1 - m_{X_1})}] & \dots & E[(X_n - m_{X_n})\overline{(X_n - m_{X_n})}] \end{pmatrix}$$

Satz 4.9: Für eine komplexe $n \times n$ Matrix A und Y = AX

$$R_V = A R_X A^H$$
, $V_V = A V_X A^H$

4.9 Zeitdiskrete stochastische Prozesse

Zeitdiskreter stochastischer Prozess: Folge X[k], $k \in \mathbb{Z}$ Liefert für jedes $\omega \in \Omega$ ein zeitdiskr. Signal $X(\omega)[.] = X[.](\omega)$

i.d.d ⇒ stationär ⇒ schwach stationär

Independent and identically distributed (i.i.d.) , wenn ... $X[k], X[k+1], \ldots$ unabh. Zufallsgrössen & gleiche Verteilung

stationär: Verbundswahrscheinlichkeitsdichte X[k], X[k+1], ..., X[k+n-1] hängt $\forall n$ nicht von k ab

schwach stationär: E[X[k]] und $E[X[k+n]*\overline{X[k]}]$ hängen für alle n nicht von k ab

Für einen schwach stationären Prozess gilt:

- **Mittelwert** des Prozesses: $m_X = E[X[k]]$
- Autokorrelationsfunktion

$$R_X[n] = E[X[k+n]\overline{X[k]}]$$
 , $R_X[-n] = \overline{R[n]}$

- mittlere Leistung

$$R_X[0] = E[|X[k]|^2]$$

gemeinsam schwach stationär:

- i) sowohl X[.] als auch Y[.] schwach stationär
- ii) $E[X[k+n]\overline{Y[k]}] \forall n \text{ unabhängig von } k$

Kreuzkorrelationsfunktion

$$R_{XY}[n] = E[X[k+n]\overline{Y[k]}], \qquad R_{XY}[-n] = \overline{R_{XY}[n]}$$

Weisses Rauschen mit Leistung σ^2 : X[.] schwach stationär:

$$m_X = 0$$
, $R_X[.] = \sigma^2 \delta[.]$, $S_X(z) = \sigma^2$
$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

4.10 Lineare Filterung eines schwach stationären Prozesses

Sei X[.] schwach stationärer Prozess

$$Y[.] = \sum_{k=-\infty}^{\infty} X[k-n] h[n]$$

Satz 4.11: Das Ausgangssignal Y[.] ist schwach stationär

$$m_Y = m_X \sum_{n=-\infty}^{\infty} h[n] = m_X H(1) = m_X H(e^{i\Omega})|_{\Omega=0}$$

Für die beiden schwach stationären Prozesse X[.] und Y[.]

$$R_{YX}[.] = h[.] * R_X[.], h^c[.] = \overline{h[-.]}$$

$$R_Y[.] = h^c[.] * R_{YX}[.] = h[.] * h^c[.] * R_X[.]$$

Mit der z-Transformation schreiben wir:

$$S_{YX}(z) = H(z) S_X(z)$$
, $S_{XY}(z) = H^c(z) S_X(z)$
 $S_Y(z) = H^c(z) S_{YX}(z) = H(z) H^c(z) S_X(z)$
 $S_Y(e^{i\Omega}) = |H(e^{i\Omega})|^2 S_X(e^{i\Omega})$

4.11 Leistungsdichtespektrum

X[.] schwach stationär, z-Transformation von R_X

$$S_X(z) = \sum_{n=-\infty}^{\infty} R_X[n] z^{-n}$$

Satz 4.12: Der $ROC(R_X)$ hat die Form $\left\{\frac{1}{\rho} < |z| < \rho\right\}$ R_X ist immer stabil, da der Einheitskreis stets enthalten ist.

Leistungsdichtespektrum: $S_X(e^{i\Omega})$: *Spektrum* $v.R_X[.]$

Wiener-Khinchine-Beziehung

$$E[|X[k]|^2] = R_X[0] = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_X(e^{i\Omega}) d\Omega$$

Satz 4.13: Sei Y[.] schwach stationärer Prozess, s.d. $S_Y(z)$ rational und weder Pole noch Nullstellen auf Einheitskreis

$$S_{V}(z) = F(z) F^{c}(z)$$

Wobei PS u. NS von F(z) diejenigen von S_Y im Einheitskreis Falls Y[.] reell, gilt $F^c(z) = F(z^{-1})$

Satz 4.14: Ein Prozess Y[.] wie in Satz 4.13 kann gedeutet werden als *gefiltertes weisses Rauschen*, wobei das Filter $H(z) = F(z) z^n$ rational, kausal und stabil ist.

Whitening-Filter: für schwach stationären Prozess Y[.], falls - g[.] kausal und stabil

- \exists kausales, stabiles Signal mit z-Transformation 1/G(z) - $S_Y(z)$ G(z) $G^c(z) = 1$

Satz 4.15: Für Y[.] wie in Satz 4.14 ist $G(z) = H(z)^{-1} = F(z)^{-1} z^{-n}$ ein Whitening-Filter.

Falls $S_{Y}(z)$ Pole od. NS auf EK, existiert kein Whitening-Filter.

4.12 Bedingte Wahrscheinlichkeiten

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Satz 4.16: P(.|B) ist ein (neues) Wahrscheinlichkeitsmass

Der Übergang von P(.) zu P(.|B) entspricht der Veränderung des Wissens eines Beobachters, der erfährt, dass das Ereignis B eingetroffen ist.

$$P(A \cap B) = P(B) P(A \mid B) = P(A) P(B \mid A)$$

Kettenregel

$$P(A \cap B \cap C) = P(A) P(B|A) P(C|A \cap B)$$

Bayes'sche Regel

$$P(A \mid B) = \frac{P(A) P(B \mid A)}{P(B)}, \qquad P(B) \neq 0$$

4.13 Totale Wahrscheinlichkeit

Vollständige Klasse/Menge v. paarweise unvereinbaren Ereignissen

$$\{A_1, \dots, A_n\}: A_i \cap A_j = \emptyset, A_1 \cup \dots \cup A_n = \Omega$$

4.17: Satz der totalen Wahrscheinlichkeit

Sei A_1, \dots, A_n eine vollständige Klasse wie oben

$$P(B) = P(A_1) P(B|A_1) + \dots + P(A_N) P(B|A_n)$$

$$P(A_i|B) = \frac{P(A_i) P(B|A_i)}{P(A_1)P(B|A_1) + \dots + P(A_n)P(B|A_n)}$$

$$F_X(x) = \sum_{k=1}^n P(A_k) F_{X|A_k}(x) , \qquad f_X(x) = \sum_{k=1}^n P(A_k) f_{X|A_k}(x)$$

Satz 4.18: Satz des totalen Erwartungswertes

$$E[X] = \sum_{k=1}^{n} P(A_K) E[X \mid A_K]$$

4.14 Werte von Zufallsgrössen als Bedingungen

Bayes'sche Regel

$$P(A \mid Y = y) = \frac{P(A) p_{Y|A}(y)}{p_{Y}(y)} \qquad P(A \mid Y = y) = \frac{P(A) f_{Y|A}(y)}{f_{Y}(y)}$$

Totale Wahrscheinlichkeit

$$P(A) = \sum_{y} p_{Y}(y) P(A \mid Y = y) \qquad P(A) = \int_{-\infty}^{\infty} f_{Y}(y) P(A \mid Y = y) dy$$

Bedingte Wahrscheinlichkeit

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$
 $f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$

Kettenregel

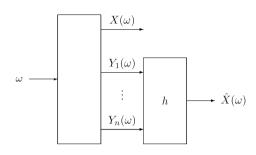
$$p(x, y, z) = p(x) p(y|x) p(z|x, y)$$
 $f(x, y, z) = f(x) f(y|x) f(z|x, y)$

Totaler Erwartungswert

$$\mathrm{E}[X] = \sum_{y} \mathrm{E}[X \mid Y = y] \, p(y) \qquad \qquad \mathrm{E}[X] = \int_{-\infty}^{\infty} \mathrm{E}[X \mid Y = y] \, f(y) \, dy$$

5. Entscheidungs- & Schätztheorie

 $\hat{X} = h(Y_1, \dots, Y_n)$ als "optimale" Schätzung von X



5.1 Bayes'sche Schätzung

Kostenfunktion $\kappa(\hat{x}, x)$: "Kosten" für Schätzung $\hat{X} = \hat{x}$, wenn tatsächlich X = x ist. Für X reell oder komplex:

Squared Error: $\kappa(\hat{x}, x) = |\hat{x} - x|^2$

Bayes'sche Schätzregel: minimiert für jede Beobachtung Y = y die mittleren Kosten $E[\kappa(\hat{x}, X) \mid Y = y]$, $E[\kappa(\hat{X}, X)]$

$$\hat{x} = h(y) = \arg\min_{\hat{x}} E[\kappa(\hat{x}, X) \mid Y = y]$$

Bayes'sche MMSE-Schätzung (minimum mean squared error)

$$\hat{x} = h(y) = m_X(y) = E[X \mid Y = y]$$

Minimiert den mittleren Schätzfehler / bedingte Varianz

$$E[|\hat{x} - X|^2 | Y = y] = Var[X | Y = y]$$

5.2 Maximum-Likelihood-Schätzung (ML)

$$h(y) = \underset{x:f_X(x)>0}{\arg\max} f_{Y|X}(y|x)$$

Likelihood-Funktion: $f_{Y|X}(y|x)$ (für feste Beobachtung y)

Satz 5.1 (Invarianz der ML-Schätzung): X = g(U)

 \hat{x} ML – Schätz. von X iff $\hat{u} = g^{-1}(\hat{x})$ ML – Schätz. von U im Bezug auf dieselbe Beobachtung Y = y

Bayes'sche Schätzung: minimiert die mittleren Kosten $E[\kappa(\hat{x}, X) \mid Y = y]$.

Bayes'sche MMSE-Schätzregel: $\hat{x} = \mathrm{E}[X \mid Y = y]$, minimiert $\mathrm{E}[|\hat{x} - X|^2 \mid Y = y]$; mittlerer Schätzfehler $\mathrm{E}[|\hat{x} - X|^2 \mid Y = y] = \mathrm{Var}[X \mid Y = y]$.

Falls X und Y gemeinsam normalverteilt sind, dann hat die MMSE-Schätzung die Form $\hat{x} = h_0 + h_1^\mathsf{T} y,$

d.h. MMSE-Schätzung = affine LMMSE-Schätzung (Kap. 5.5).

MAP-Schätzregel (siehe Kap. 5.4): $\hat{x} = \underset{x}{\operatorname{argmax}} f_{X|Y}(x|y)$.

Maximum-Likelihood (ML) Schätzregel: $\hat{x} = \underset{x: f_X(x) > 0}{\operatorname{argmax}} \ f_{Y|X}(y|x).$

5.3 Beispiele: verrauschte Messungen

X : normalverteilt, Mittelwert $m_{\scriptscriptstyle X}$ und Varianz $\sigma_{\scriptscriptstyle X}^2$

$$f_X(x) = \frac{1}{\sqrt{2\pi} \sigma_X} \exp\left(-\frac{(x - m_X)^2}{2\sigma_X^2}\right)$$

Eine Messung: Y = aX + W

Bayes'sche Schätzung

$$f_{X,Y}(x,y) = f_X(x) f_{Y|X}(y|x) = f_X(x) f_W(y - ax)$$

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)} \propto f_{X,Y}(x,y)$$

Ergibt Normalverteilung mit Erwartungswert u. Varianz

$$\hat{x} = E[X \mid Y = y] = \frac{\sigma_W^2 m_X + a \, \sigma_X^2 \, y}{\sigma_W^2 + a^2 \, \sigma_X^2}$$

$$E[|\hat{x} - X|^2 | Y = y] = \sigma_{X|Y}^2 = \left(\frac{1}{\sigma_X^2} + \frac{ay}{\sigma_W^2}\right)$$

ML-Schätzung

$$f_{Y|X}(y|x) = f_W(y - ax)$$

Ergibt Normalverteilung mit Erwartungswert u. Varianz

$$\hat{x} = m_L = \sigma_L^2 \frac{ay}{\sigma_W^2} = \frac{y}{a}$$
, $\sigma_L^2 = \frac{\sigma_W^2}{a^2}$

Zwei Messungen: $Y_1 = aX + W_1$, $Y_2 = bX + W_2$

Bayes'sche Schätzung

$$f_{X,Y_1,Y_2}(x, y_1, y_2) = f_X(x) f_{W_1}(y_1 - ax) f_{W_2}(y_2 - bx)$$
$$f_{X|Y_1,Y_2}(x|y_1, y_2) \propto f_{X,Y_1,Y_2}(x, y_1, y_2)$$

Ergibt Normalverteilung mit Erwartungswert u. Varianz

$$\hat{x} = E[X \mid Y = y] = \frac{\sigma_1^2 \sigma_2^2 m_X + a \sigma_X^2 \sigma_2^2 y_1 + b \sigma_X^2 \sigma_1^2 y_2}{\sigma_1^2 \sigma_2^2 + a^2 \sigma_X^2 \sigma_2^2 + b^2 \sigma_X^2 \sigma_1^2}$$
$$\sigma_{X|Y}^2 = \left(\frac{1}{\sigma_X^2} + \frac{a^2}{\sigma_1^2} + \frac{b^2}{\sigma_2^2}\right)^{-1}$$

ML-Schätzung

$$f_{Y_1,Y_2|X}(y_1,y_2|X) = f_{W_1}(y_1 - ax) f_{W_2}(y_2 - bx)$$

Ergibt Normalverteilung mit Erwartungswert u. Varianz

$$\hat{x} = m_L = \frac{a \sigma_2^2 y_1 + b \sigma_1^2 y_2}{a^2 \sigma_2^2 + b^2 \sigma_1^2} , \qquad \sigma_L^2 = \left(\frac{a^2}{\sigma_1^2} + \frac{b^2}{\sigma_2^2}\right)^{-1}$$

5.4 Grundbegriffe der Entscheidungstheorie

X sei eine diskrete Zufallsgrösse, d.h. nur Werte in einer endlichen oder abzählbar unendlichen Menge S Dieses Problem heisst Entscheidungsproblem und kann in ein Hypothesentestproblem umgewandelt werden.

Bayes'sche Entscheidungsregel

$$\hat{x} = h(y) = \arg\min_{\hat{x}} \sum_{x \in S} \kappa(\hat{x}, x) P(X = x) f_{Y|X} (y|x)$$

MAP-Entscheidungsregel (maximum a posteriori) minimiert Fehlerwahrscheinlichkeit von Bayes

$$\hat{x} = \arg\max_{x} P(X = x) f_{Y|X} (y|x)$$

ML-Entscheidungsregel oft mit Entscheidungsgebieten

$$\hat{x} = \underset{x}{\arg\max} \ f_{Y|X}(y|x)$$

5.5 LMMSE-Schätzung

(linear minimum mean squared error estimation)

Lineare Schätzfunkt. $h:(Y_1,\ldots,Y_n)$ minimiert $E[\left|\hat{X}-X\right|^2]$

Allgemein schlechter als Bayes Schätzung, dafür einfacher

$$\hat{X} = h(Y_1, ..., Y_n) = \sum_{k=1}^{n} h_k Y_k$$

Satz 5.2 (Orthogonalitätsprinzip): $\hat{X} = \sum_k h_k Y_k$ genau dann LMMSE-Schätzung von X aus $Y_1, ..., Y_n$, wenn:

$$E[|(\hat{X} - X)\overline{Y_k}|] = 0 \qquad \forall k = 1, ..., n$$

d.h. Fehler $\hat{X} - X$ orthogonal zu allen Beobachtungen Zu lösendes Gleichungssystem (mind. 1 Lösung):

$$\sum_{j=1}^{n} h_{j} E[Y_{j} \overline{Y}_{k}] = E[X \overline{Y}_{k}]$$

Satz 5.3: LMMSE-Fehler

$$E\left[\left|\hat{X} - X\right|^{2}\right] = E\left[X\left(\overline{X - \hat{X}}\right)\right] = E\left[\left|X\right|^{2}\right] - E\left[\left|\hat{X}\right|^{2}\right]$$

Affine LMMSE-Schätzung: zusätzliche Beobachtung

$$\hat{X} = h(Y_1, \dots, Y_n) = \sum_{k=1}^n h_k Y_k + h_0 = \sum_{k=0}^n h_k Y_k$$

 $Y_0 = 1$: "virtuelle Beobachtung" erlaubt Einbeziehung eines Mittelwertes

5.6 Wiener-Filter

Suche ein zeitinvariantes lineares Filter, s.d. die Schätzung minimalen quadratischen Fehler $E\left[\left|\widehat{X}[k]-X[k]\right|^2\right]$ ergibt:

$$\hat{X}[.] = h[.] * Y[.] = \sum_{n=-L}^{M} h[n] Y[k-n]$$

Fenster: $h[n]=0 \quad \text{für } n<-L \text{ , } n>M$ Berücksichtigt nur die M+L Werte $Y[k-M],\dots,Y[k+L]$ L>0: verz"ogerte Schätzung ; L<0: Vorhersage

Kann Filter durch Verzögerung L immer kausal machen

$$h_{s}[.] = h[.-L]$$

Wiener-Hopf-Gleichung (Orthogonalitätsbedingungen)

$$\sum_{n=-L}^{M} h[n] R_{Y}[j-n] = R_{XY}[j], \qquad j = -L, ..., M$$

Mittlerer quadratischer Fehler:

$$E[|\hat{X}[k] - X[k]|^2] = R_X[0] - \sum_{n=-L}^{M} R_{XY}[n] \overline{h[n]}$$

FIR Wiener-Filter: $Ordnung\ N = M + L$

$$\begin{pmatrix} R_Y[0] & \overline{R_Y[1]} & \overline{R_Y[2]} & \dots & \overline{R_Y[N]} \\ R_Y[1] & R_Y[0] & \overline{R_Y[1]} & \dots & \overline{R_Y[N-1]} \\ \vdots & \vdots & \dots & \dots & \vdots \\ R_Y[N] & R_Y[N-1] & R_Y[N-2] & \dots & R_Y[0] \end{pmatrix} \cdot \begin{pmatrix} h[0-L] \\ h[1-L] \\ \vdots \\ h[N-L] \end{pmatrix} = \begin{pmatrix} R_{XY}[0-L] \\ R_{XY}[1-L] \\ \vdots \\ R_{XY}[N-L] \end{pmatrix}$$

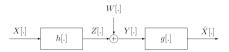
Nicht-kausales Wiener-Filter:

$$H(z) = \frac{S_{XY}(z)}{S_Y(z)}$$

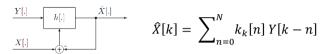
5.8 LMMSE-Egalisation

Anwendung e. nicht-kausalen Wiener-Filters zur Egalisation

$$G(z) = \frac{S_{XY}(z)}{S_{Y(z)}} = \frac{S_X(z) H^c(z)}{S_X(z) H(z) H^c(z) + S_W(z)}$$



5.9 LMS-Algorithmus (least mean square)



Adaptives Filter: zeitvariantes FIR-Filter mit 2 Phasen eingefroren: $h_{k+1}[.] = h_k[.]$; adaptierend:

$$h_{k+1}[n] = h_k[n] + \beta (X[k] - \hat{X}[k]) Y[k-n]$$

β: Schrittweite; falls klein, "lernt" das Filter langsam

6. Trellis Algorithmen

6.1 Viterbi Algorithmen

Min-Summe-Version: Summe der Zweigmetriken

$$\mu(s) = \min_{\substack{\text{Zweige } b \\ \text{rst}(b) = s}} \mu(lst(b)) + \mu(b)$$

Max-Produkt-Version: Produkt der Zweigmetriken

$$\mu(s) = \max_{Zweige\ b} \mu(lst(b)) * \mu(b)$$

$$rst(b) = s$$

7. Verschiedenes

$$|a-b|^2 = |a|^2 + |b|^2 - 2 Re(a\bar{b})$$

$$E\left[\left|\hat{X}-X\right|^{2}\right]=E\left[\left(\hat{X}-X\right)\overline{\left(\hat{X}-X\right)}\right]$$

8. Tabellen

$$i = \sqrt{1} = e^{i\frac{\pi}{2}}$$

$$\tan' x = 1 + \tan^2 x$$

$$\sin^2 x + \cos^2 x = 1$$

$$\cosh^2 x - \sinh^2 x = 1$$

$$\cos(z) = \cos(x)\cosh(y) - i\sin(x)\sinh(y)$$

$$\sin(z) = \sin(x)\cosh(y) + i\cos(x)\sinh(y)$$

Grad	Rad	$\sin \varphi$	$\cos \varphi$	$\tan \varphi$
0°	0	0	1	0
30°	$\frac{1}{6}\pi$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45°	$\frac{1}{4}\pi$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{1}{3}\pi$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{1}{2}\pi$	1	0	
120°	$\frac{2}{3}\pi$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$
135°	$\frac{3}{4}\pi$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1
150°	$\frac{5}{6}\pi$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$
180°	π	0	-1	0

Additionstheoreme

$$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$$
$$\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$$
$$\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha\tan\beta}$$

Doppelter und halber Winkel

$$\sin 2\varphi = 2\sin\varphi\cos\varphi \qquad \qquad \sin^2\frac{\varphi}{2} = \frac{1}{2}(1-\cos\varphi)$$

$$\cos 2\varphi = \cos^2\varphi - \sin^2\varphi \qquad \cos^2\frac{\varphi}{2} = \frac{1}{2}(1-\cos\varphi)$$

$$\tan 2\varphi = \frac{2\tan\varphi}{1-\tan^2\varphi} \qquad \tan^2\frac{\varphi}{2} = \frac{1-\cos\varphi}{1+\cos\varphi}$$

Umformung einer Summe in ein Produkt

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

Umformung eines Produkts in eine Summe

$$2\sin\alpha\sin\beta = \cos(\alpha - \beta) - \cos(\alpha + \beta)$$
$$2\cos\alpha\cos\beta = \cos(\alpha - \beta) + \cos(\alpha + \beta)$$
$$2\sin\alpha\cos\beta = \sin(\alpha - \beta) + \sin(\alpha + \beta)$$

Reihenentwicklungen

$$e^{x} = 1 + x + \cdots = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

$$\log(1+x) = x - \frac{x^{2}}{2} + \cdots = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^{k}}{k}$$

$$(1+x)^{n} = 1 + {n \choose 1} x + \cdots = \sum_{k=0}^{\infty} {n \choose k} x^{k}$$

$$\sin x = x - \frac{x^{3}}{3!} + \cdots = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k+1}}{(2k+1)!}$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \cdots = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k}}{(2k)!}$$

$$\arctan x = x - \frac{x^{3}}{3} + \cdots = \sum_{k=0}^{\infty} (-1)^{k} \frac{x^{2k+1}}{2k+1}$$

$$\sinh x = x + \frac{x^{3}}{3!} + \cdots = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$$

$$\cosh x = 1 + \frac{x^{2}}{2!} + \cdots = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$$

$$\operatorname{artanh} x = x + \frac{x^{3}}{3} + \cdots = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{2k+1}$$

Summe der ersten n-Zahlen

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

Geometrische Reihe

$$\sum_{k=0}^{n} x^{k} = 1 + x + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x}$$

Fourier-Korrespondenzen

f(t)	$\widehat{f}(\omega)$
e^{-at^2}	$\sqrt{\frac{\pi}{a}} e^{\frac{-\omega^2}{4a}}$
$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$

Eigenschaften der Fourier-Transformation

Eigenschaft	f(t)	$\widehat{f}(\omega)$
Linearität	$\lambda f(t) + \mu g(t)$	$\lambda \widehat{f}(\omega) + \mu \widehat{g}(\omega)$
Ähnlichkeit	f(at) $a > 0$	$\frac{1}{ a }\widehat{f}(\frac{\omega}{a})$
Verschiebung	f(t-a)	$e^{-ai\omega}\widehat{f}(\omega)$
versemending	$e^{ait}f(t)$	$\widehat{f}(\omega - a)$
Ableitung	$f^{(n)}(t)$	$(\mathrm{i}\omega)^n\widehat{f}(\omega)$
Ableitung	$t^n f(t)$	$\mathrm{i}^n\widehat{f}^{(n)}(\omega)$
Faltung	f(t) * g(t)	$\widehat{f}(\omega) \cdot \widehat{g}(\omega)$

Partialbruchzerlegung (PBZ)

Reelle Nullstellen n-ter Ordnung:

$$\frac{A_1}{(x-a_k)} + \frac{A_2}{(x-a_k)^2} + \dots + \frac{A_n}{(x-a_k)^n}$$

Paar komplexer Nullstellen n-ter Ordnung:

$$\frac{B_1x + C_1}{(x - a_k)(x - \overline{a_k})} + \dots + \frac{B_nx + C_n}{[(x - a_k)(x - \overline{a_k})]^n} +$$
$$(x - a_k)(x - \overline{a_k}) = (x - Re)^2 + Im^2$$

Laplace- Korrespondenz

f(t)	F(s)	f(t)	F(s)
$\sigma(t)$	1	H(t-a)	$\frac{1}{s}e^{-as}$
1	$\frac{1}{s}$	e^{at}	$\frac{1}{s-a}$
t	$\frac{1}{s^2}$	te^{at}	$\frac{1}{(s-a)^2}$
t^n	$\frac{n!}{s^{n+1}}$	$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
$\sin\left(at\right)$	$\frac{a}{s^2 + a^2}$	$\sinh\left(at\right)$	$\frac{a}{s^2 - a^2}$
$\cos\left(at\right)$	$\frac{s}{s^2+a^2}$	$\cosh\left(at\right)$	$\frac{s}{s^2 - a^2}$

Eigenschaften der Laplace-Transformation

Eigenschaft	f(t)	F(s)
Linearität	$\lambda f(t) + \mu g(t)$	$\lambda F(s) + \mu G(s)$
Ähnlichkeit	f(at) $a > 0$	$\frac{1}{a}F(\frac{s}{a})$
Verschiebung im Zeitbereich	$f(t-t_0)$	$e^{-st_0}F(s)$
Verschiebung im Bildbereich	$e^{-at}f(t)$	F(s+a)
	f'(t)	sF(s) - f(0)
Ableitung im Zeitbereich	f''(t)	$s^2F(s) - sf(0) - f'(0)$
	$f^{(n)}$	$s^{n}F(s) - \sum_{k=0}^{n-1} f^{(k)}(0)s^{n-k-1}$
	-tf(t)	F'(s)
Ableitung im Bildbereich	$t^2 f(t)$	F''(s)
	$(-t)^n f(t)$	$F^{(n)}(s)$
Integration im Zeitbereich	$\int_0^t f(u) \mathrm{d} u$	$\frac{1}{s}F(s)$
Integration im Bildbereich	$\frac{1}{t}f(t)$	$\int_{s}^{\infty} F(u) \mathrm{d}u$
Faltung	f(t) * g(t)	$F(s) \cdot G(s)$
Periodische Funktion	f(t) = f(t+T)	$\frac{1}{1 - e^{-sT}} \int_0^T f(t) e^{-st} dt$

<u>Ableitungen</u>

Potenz- und Exponentialfunktionen			Trigonometrische Funktionen		Hyperbolische Funktionen	
f(x)	f'(x)	Bedingung	f(x)	f'(x)	f(x)	f'(x)
x^n	nx^{n-1}	$n \in \mathbb{Z}_{\geq 0}$	$\sin x$	$\cos x$	$\sinh x$	$\cosh x$
x^n	nx^{n-1}	$n \in \mathbb{Z}_{<0}, x \neq 0$	$\cos x$	$-\sin x$	$\cosh x$	$\sinh x$
x^a	ax^{a-1}	$a \in \mathbb{R}, \ x > 0$	$\tan x$	$\frac{1}{\cos^2 x}$	$\tanh x$	$\frac{1}{\cosh^2 x}$
$\log x$	$\frac{1}{x}$	x > 0	$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$	$\operatorname{arsinh} x$	$\frac{1}{\sqrt{x^2+1}}$
e^x	e^x		$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$	$\operatorname{arcosh} x$	$\frac{1}{\sqrt{x^2-1}}$
a^x	$a^x \cdot \log a$	a > 0	$\arctan x$	$\frac{1}{1+x^2}$	$\operatorname{artanh} x$	$\frac{1}{1-x^2}$

Stammfunktionen

f(x)	F(x)	Bedingung	f(x)	F(x)	f(x)	F(x)
x^n	$\frac{1}{n+1}x^{n+1}$	$n \in \mathbb{Z}_{\geq 0}$	$\frac{1}{x}$	$\log x $	$\sin\left(\omega t\right)\sin\left(\omega t\right)$	$\frac{t}{2} - \frac{\sin\left(2\omega t\right)}{4\omega}$
x^n	$\frac{1}{n+1}x^{n+1}$	$n \in \mathbb{Z}_{\leq -2}, x \neq 0$	$\tan x$	$-\log \cos x $	$\sin(\omega t)\cos(\omega t)$	$-\frac{\cos{(2\omega t)}}{4\omega}$
x^a	$\frac{1}{a+1}x^{a+1}$	$a \in \mathbb{R}, a \neq -1, x > 0$	$\tanh x$	$\log\left(\cosh x\right)$	$\sin(\omega t)\sin(n\omega t)$	$\frac{n\cos\left(\omega t\right)\sin\left(n\omega t\right)-\sin\left(\omega t\right)\cos\left(n\omega t\right)}{\omega(n^2-1)}$
$\log x$	$x \log x - x$	x > 0	$\sin^2 x$	$\frac{1}{2}(x - \sin x \cos x)$	$\sin\left(\omega t\right)\cos\left(n\omega t\right)$	$\frac{n\sin(\omega t)\sin(n\omega t) + \cos(\omega t)\cos(n\omega t)}{\omega(n^2 - 1)}$
e^{ax}	$\frac{1}{a}e^{ax}$	$a \neq 0$	$\cos^2 x$	$\frac{1}{2}(x+\sin x\cos x)$	$\cos(\omega t)\sin(n\omega t)$	$\frac{\sin(\omega t)\sin(n\omega t) + n\cos(\omega t)\cos(n\omega t)}{\omega(1-n^2)}$
a^x	$\frac{a^x}{\log a}$	$a > 0, a \neq 1$	$\tan^2 x$	$\tan x - x$	$\cos(\omega t)\cos(n\omega t)$	$\frac{\sin(\omega t)\cos(n\omega t) + n\cos(\omega t)\sin(n\omega t)}{\omega(1-n^2)}$

Standard-Substitutionen

Integral	Substitution	Ableitung	Bemerkung
$\int f(x, x^2 + 1) \mathrm{d}x$	$x = \tan t$	$\mathrm{d}x = \tan^2 t + 1\mathrm{d}t$	$t \in \bigcup_{k \in \mathbb{Z}} \left(k\pi - \frac{\pi}{2}, k\pi + \frac{\pi}{2} \right)$
$\int f(x, \sqrt{ax+b}) \mathrm{d}x$	$x = \frac{t^2 - b}{a}$	$\mathrm{d}x = \frac{2}{a}tdt$	$t \ge 0$
$\int f(x, \sqrt{ax^2 + bx + c}) \mathrm{d}x$	$x + \frac{b}{2a} = t$	$\mathrm{d}x = \mathrm{d}t$	$t \in \mathbb{R},$ quadratische Ergänzung
$\int f(x, \sqrt{a^2 - x^2}) \mathrm{d}x$	$x = a\sin t$	$\mathrm{d}x = a\cos t\mathrm{d}t$	$-\frac{\pi}{2} < t < \frac{\pi}{2}, 1 - \sin^2 x = \cos^2 x$
$\int f(x, \sqrt{a^2 + x^2}) \mathrm{d}x$	$x = a \sinh t$	$\mathrm{d}x = a\cosh t\mathrm{d}t$	$t \in \mathbb{R}, 1 + \sinh^2 x = \cosh^2 x$
$\int f(x, \sqrt{x^2 - a^2}) \mathrm{d}x$	$x = a \cosh t$	$\mathrm{d}x = a \sinh t \mathrm{d}t$	$t \ge 0, \cosh^2 x - 1 = \sinh^2 x$
$\int f(e^x, \sinh x, \cosh x) dx$	$e^x = t$	$\mathrm{d}x = \frac{1}{t}\mathrm{d}t$	$t > 0$, $\sinh x = \frac{t^2 - 1}{2t}$, $\cosh x = \frac{t^2 + 1}{2t}$
$\int f(\sin x, \cos x) \mathrm{d}x$	$\tan \frac{x}{2} = t$	$\mathrm{d}x = \frac{2}{1+t^2} \mathrm{d}t$	$-\frac{\pi}{2} < t < \frac{\pi}{2}$, $\sin x = \frac{2t}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$