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Embedded Systems Summary 

Andreas Biri, D-ITET                              10.07.15 

1. Introduction 

Embedded Systems (ES): information processing systems 

embedded into a larger project 

Cyber-physical system (CPS): must operate dependably, 

safely, securely, efficiently and in real-time 

Characteristics of Embedded Systems (1-19) 

- dependable: reliable, maintainable, available, safe 

- efficient: energy, code, run-time, weight, cost 

- specialized: dedicated towards certain application 

- real-time: must meet constrains of environment 

- not programmable by end-user 

- fixed run-time requirements (additional power useless) 

- criteria: cost, power consumption, predictability 

- energy & temperature constrains (often independent) 

- energy harvesting important (e.g. zero power systems)  

 

Hard real-time constrain: not meeting that constrain could 

result in a catastrophe; answer arriving too late is wrong 

Hybrid system: analog and digital system components 

Reactive system: in continual interaction with environment 

                        executes at pace determined by environment 

MPSoCs: Multiprocessor systems-on-a-chip (e.g. phone) 

 

 

2. Software Introduction 

Real-Time Systems (2-15) 

ES are expected to finish tasks reliably within time bounds 

Hard constrain: missing a deadline results in catastrophe 

     often in safety-critical applications (aeronautics, brakes) 

Soft constrain: missing deadline is undesirable but not fatal 

Worst-Case Execution Time (WCET): upper bound on 

execution time of all tasks statically known 

- difficult to calculate because of parallelism (branch  

   prediction, speculation, pipelines) & caches 

Best-Case Execution Time (BCET): lower bound for it 

Programming Paradigms (2-25) 

Time triggered approaches (2-26) 

- periodic 

- cyclic executive 

- generic time-triggered scheduler 

- no interrupts except by timer 

- deterministic behaviour at run-time 

- interaction with environment through polling 

Summary 

+ deterministic schedule (computed before run-time) 

+ shared resources pose no problem 

- external communication only via polling 

- inflexible (no adaptation to environment) 

- long processes have to be split into subtasks 

Extension 

- allow arbitrary interrupts (not deterministic anymore!) 

- allow preemtable background processes 

Simple Periodic Time-Triggered Scheduler 

Timer interrupts regularly with period P (same for all processes) 

 

- unpredictable starting times for later processes 

- mutually exclusive, no sync required for communication 

� ��������
�

 < � 

Time-Triggered Cyclic Executive Scheduler 

processes may have different periods 

 

- period P portioned into frames of length f 

- terrible for long processes (need to be split) 

Conditions 

- Process executes at most once within a frame 

� ≤ ����  ∀ � 

- Period P is least common multiple of all periods ���� 

- Periods start and complete within a single frame: 

� ≥ �������  ∀ � 

- at least one frame boundary between release & deadline 

2� − gcd�����, �� ≤   ����  ∀ � 

Generic Time-Triggered Scheduler 

- precompute schedule a priori offline (if purely TT) 

Task-Descriptor List (TDL): contains cyclic schedule for all 

activities, considering required precedence and mutual 

exclusion -> no explicit coordination at run-time necessary 
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Event triggered approaches (2-36) 

- non-preemptive 

- preemptive (stack policy, cooperative, multitasking) 

Summary 

+ dynamic & adaptive 

+ can react to environment by receiving interrupts 

+ guarantees can be given during run-time or even off-line 

- problems with respect to timing 

- shared resources have to be coordinated 

Non-Preemptive Event-Triggered Scheduling 

events are collected in a queue and cannot be preempted 

(cannot give guarantees regarding deadlines) 

 
ISR: Interrupt service routine 

- event associated with corresponding process 

- events emitted by  a) external interrupts 

    b) processes themselves 

- simple communication between processes 

- buffer overflow if too many events are generated 

- long processes prevent others from running (-> split) 

Extension 

- preemtable background process if event queue is empty 

- timed events enter queue only after time interval elapsed 

Preemptive Event-Triggered Scheduling 

possible to preempt process, solves problem of long tasks 

Stack-based: stack-based context mechanism of function 

calls (process = C-style function with own memory space) 

- LIFO: restricts flexibility, bad if waiting for external event 

- no mutual exclusion; shared resources must be protected   

  (e.g. disable interrupt, semaphores) 

Processes and CPU (2-43) 

Process: unique execution of a program (“instance”) 

- has its own state (e.g. register values, memory stack) 

- several copies of a program can run simultaneously 

Activation record: copy of process state (includes registers) 

Context switch: current CPU context goes, next comes 

- context of current process is stored (registers, program  

   counter, stack pointer) 

- execution continues where other process left off 

Co-operative Multitasking (2-45) 

process allows context switch at cswitch() call 

+ predictable where context switch can occur 

+ less errors with use of shared resources 

- bad programming can stall the system (doesn’t yield) 

- real-time behaviour at risk (if switch not possible) 

Preemptive Multitasking (2-60) 

Scheduler (OS)   i) controls when context switches 

                             ii) determines which process runs next 

Scheduler is called / switch enforced by: 

    - use of timers / timer interrupts 

    - hardware or software interrupts 

    - direct call to OS routines to switch context 

 

 

 

 

 

3. Real-Time Models 

Hard: missing its deadline has catastrophic consequences 

Soft:   meeting its deadline is desirable, but not critical 

Schedule: assignment of tasks to the processor 

-   ���� = 0 : processor is idle at time � 

-   ���� = �  : processor is executing task � at time � 

Feasible: tasks can be completed according to constrains 

Schedulable: there exists at least one algorithm which can 

produce a feasible schedule 

Schedule & Timing (3-5) 

��  /  �  task / periodic task � 

!�  / "�  arrival / release time  (ready for execution) 

��  computation time  (required CPU time) 

#�  / ��  absolute / relative deadline #� ≥ "� + �� 

%�  / ��  start /finishing time 

��  period   (for periodic tasks) 

&�  phase   (start of periodic task) 

 
 

Derived figures 

Lateness   '� = �� − #�  
delay of a task completion 

Tardiness / exceeding time �� = max�0, '�� 

time exceeded after deadline 

Laxity / slack time  +� = #� − !� − �� 
 

maximal time a task can be delayed on its activation to 

complete within deadline 
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Precedence Constrains: describes the interdependencies 

between tasks (“Which one has to be executed first?”) 

Classification of Scheduling Algorithms (3-11) 

Preemptive algorithm: running task can be interrupted at 

any time to assign the processor to another active task 

Non-preemptive algorithm: once started, the task is 

executed until completion (no interruptions) 

Static algorithm: scheduling decisions are based on fixed 

parameters, assigned to tasks before activation (offline) 

Dynamic algorithm: scheduling decisions based on 

dynamic parameters that may change during system 

execution (e.g. CPU bursts, I/O waits) 

Schedule metrics (3-13) 

Optimal algorithm: minimizes given cost function 

Heuristic algorithm: tends to find optimal schedule 

Average response time 

�,- = 1
/ �� �� − "�  �

0

�12
 

Total completion time 

�3 = max���� − min�"�� 

Weighted sum of response time 

�6 =  ∑ 8���� − "�� ∑ 8�9  

Maximum lateness 

':;< = max� ��� − #�� 

Number of late tasks 

=>;?@ =  � A�%%����
0

�12
 , A�%%���� =  B  0    �� ≤ #�1       CD%C  

4. Periodic/Aperiodic Tasks 

Aperiodic Tasks (4-3) 

Equal arrival times & non-preemptive 

    - EDD (Jackson) for independent tasks 

    - LDF (Lawler)   for dependent tasks 

Arbitrary arrival times & preemptive 

     - EDF (Horn)  for independent tasks 

     - EDF*(Chetto) for dependent tasks 

Earliest Deadline Due (EDD) (4-4) 

equal arrival times & non-preemptive : E�/ log�/�� 

Algorithm: Task with earliest deadline is processed first 

Jackson’s rule: processing in order of non-decreasing 

deadlines is optimal with respect to minimizing the 

maximum lateness 

Earliest Deadline First (EDF) (4-7) 

arbitrary arrival times & preemptive : E�/H� 

Algorithm: Task with earliest deadline is processed first; if 

new task arrives with earlier deadline, current task is 

interrupted (just like EDD, but with recalculation) 

Horn’s rule: executing the task with the earliest absolute 

deadline among the ready tasks at any time is optimal with 

respect to minimizing the maximum lateness 

���� task executing in the slice I �, � + 1� 

���� ready task which has the earliest deadline 

�J��� time at which the next slice of ���� is executed 

 

Guarantee: 

Worst case finishing time:  �� = � + ∑ KL����L12  

EDF guarantee condition:  �� ≤ #�     ∀ � = 1, … , / 

A new tasks is accepted if the schedule remains feasible 

Earliest Deadline First* (EDF*) (4-12) 

determines a feasible schedule for tasks with precedence 

constrains if there exists one 

Algorithm: Modify release times & deadlines, then EDF 

Modification of release times: 

1. Start at the top (roots to leaves) 

2. Search the predecessor which takes the longest: 

"N∗ = maxP "N  , A!QP "�∗ + �� ∶ �� → �NT T 

Modification of deadlines: 

1. Start at the bottom (leaves to roots) 

2. Search the successor which starts the earliest: 

#�∗ = minP #�  , A�/P #N∗ − �N ∶ �� → �N  T T 

Latest Deadline First (LDF) (U2.2) 

Non-preemptive scheduling for precedence constrains 

Algorithm: 

1. A precedence graph is constructed 

2. Leaves to roots: Select task with latest deadline among 

all available tasks to be scheduled last 

3. At runtime: tasks are extracted from head of the queue: 

first task inserted into queue will be executed last (FILO) 

Shortest Job First (SJF) 

Minimizes average waiting time 
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Periodic Tasks (4-17) 

Deadline equals period: 

     - Rate-monotonic (RM) for static priority 

     - EDF for dynamic priority 

Deadline smaller than period: 

     - Deadline-monotonic (DM) for static priority 

     - EDF* for dynamic priority 

Terminology 

 �,N denotes the j-th instance of task i 

"�,N  / %�,N  / ��,N  release / start / finishing time 

&�  phase of task i (release time of its first instance) 

��  relative deadline of task i (same for all instances) 

��  period with which the task is regularly activated 

��  worst case execution time (same for all instances) 

Rate Monotonic Scheduling (RM) (4-22) 

RM is optimal among all fixed-priority assignments, i.e. no 

other fixed-priority algorithm can schedule a task set which 

cannot be scheduled with RM 

- static priority assignment (offline, as not changed) 

- preemptive (by a task with higher priority) 

- deadlines equals to the period ( �� ≤ �� = ��  ) 

Algorithm: tasks with higher request rate / shorter period 

will have higher priorities and interrupt lower ones 

Critical instant: task is release simultaneously with all 

higher priority tasks / release creates largest response time 

Schedulability analysis 

Sufficient but not necessary (U : processor utilization factor): 

U = � ����

0

�12
   ≤   / P 22 0⁄ − 1T 

Sufficient and necessary: same as for DM 

Deadline Monotonic Scheduling (DM) (4-34) 

Deadlines may be smaller than the period: 

�� ≤ �� ≤ ��  
Algorithm: tasks with smaller relative deadlines will have 

higher priorities and interrupt tasks with lower priority 

Schedulability analysis 

Sufficient but not necessary: 

� ����

0

�12
   ≤   / P 22 0⁄ − 1T 

Sufficient and necessary: 

- worst-case demand when all tasks are released  

   simultaneously (critical instances) 

- worst case interference W�  for task i : 

W� =  � X �
�N  Y

�Z2

N12
 �N  

where tasks with [ < � have higher priority 

- Longest response time  \� = �� + W�   (at critical instance) 

- For schedulability test: find smallest \�  which satisfies 

\� = �� +  � X \��N  Y
�Z2

N12
 �N    →     \� ≤   ��      ∀ � 

Earliest Deadline First (EDF) Scheduling (4-41) 

Active task with earliest deadline has highest priority 

- dynamic priority assignment 

- preemptive 

- �� ≤ ��  
Schedulability test ONLY for �� = ��  
Necessary & sufficient: schedulable with EDF if and only if 

� ����

0

�12
 =   U ≤  1 

U: average processor utilisation 

Problem of Mixed Tasks Sets (4-47) 

Periodic tasks: time-driven, execute regular critical control 

activities with hard timing constrains 

Aperiodic tasks: event-driven; hard, soft or no real-time 

Sporadic tasks: aperiodic task characterized by a minimum 

interarrival time (enables offline guarantee on constrains) 

Background scheduling (4-48) 

RM & EDF scheduling of periodic tasks: processing of 

aperiodic tasks in the background / when no periodic one 

 

RM Polling Server (PS) (4-50) 

Idea: Introduce artificial periodic task which services 

aperiodic requests as soon as possible 

Function of polling server (PS): instantiated at regular 

intervals �] and serves any pending aperiodic requests 

If none, the process is suspended (time not preserved!) 

Disadvantage: if an aperiodic request arrives just after the 

server is suspended, it must wait for next polling period 

Schedulability analysis: just like RM, suff. but not necessary 

�]�] +  � ����

0

�12
   ≤   � / + 1� P 22 �0^2�⁄ − 1T 

Sufficient if aperiodic task finishes before a new arrives 

_ 1 +  ` �;�]  a b �]   ≤   �;  
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EDF – Total Bandwidth Server (4-55) 

When k-th aperiodic request arrives at time � = "L, it 

receives a deadline 

#L = max� "L , #LZ2 � + �LU]  

U] = 1 − Uc :  server utilization factor / bandwidth 

Once a deadline is assigned, the request is inserted into 

the ready queue as any other periodic instance 

Schedulability test: necessary & sufficient 

Uc + U]  ≤  1 

 

 

 

 

 

 

 

 

 

 

 

5. Resource Sharing 

Common resources: data structures, variables, main 

memory area, file, set of registers, I/O unit 

Critical section: piece of code, in which access to shared 

resources requires mutual exclusion 

blocked:  task waits for an exclusive resource to be freed 

holds:   task is in possession of said resource 

free:   exclusive resource after leaving critical section

 

Semaphores (5-5) 

d�  protects each exclusive resource \� 
wait�d�� : start of critical section, requests entrance 

signal�d�� : end of critical section, frees resource 

Priority Inversion (5-7) 

- low-priority task holds resource which prevents high-

priority task from running 

- meanwhile, a medium-priority task can preempt the low-

priority task and execute with the high-priority blocked 

“Solution”: disallow preemption in critical sections 

- unnecessary blocking of unrelated tasks with higher prio 

Priority Inheritance Protocol (PIP) (5-10) 

assume priority of highest blocked task in critical section 

��  : nominal priority 

�� ≥ ��  : active priority 

Direct Blocking: lower-priority task blocks higher task 

Push-through Blocking: medium-priority task is blocked by 

low-priority task which has inherited a higher priority 

6. Real-Time OS 

Deficits of Desktop OS 

- monolithic kernel too feature rich, takes too much space 

- not: modular, fault-tolerant, configurable, modifiable 

- not power optimized 

- timing uncertainty too large 

Advantages of Embedded OS 

- OS can be fitted to each individual need: remove unused 

functions, conditions compilation depending on hardware, 

replace dynamic data by static data, advanced compiling 

- improved predictability (everything through scheduler) 

- interrupts can be employed by all processes 

- software tested and considered reliable (no protection) 

Real-Time OS (6-10) 

Requirements 

- predictability of time-behaviour 

 - upper bound on the execution time of tasks 

 - almost all activities controlled by scheduler 

- management of timing and scheduling 

 - inclusion of deadlines 

 - OS must provide precise time services 

- speed 

Main functionality of RTOS-Kernels (6-13) 

Process management (6-13) 

- execution of quasi-parallel tasks 

 - maintain process states & process queues 

 - preemptive scheduling (fast context switch) 

 - quick interrupt handling 

- CPU scheduling: guarantee deadlines & fairness 

- Process synchronization (semaphores, mutual exclusion) 

- Inter-process communication (buffering) 

- real-time clock for internal time reference 
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Process States (6-15) 

 

run: starts executing on the processor 

ready: ready to execute but not assigned yet 

wait: task is waiting for a semaphore for access 

idle: completed execution & waiting for next period 

Threads (6-17) 

A basic unit of CPU utilization, similar to a process 

- typically shared: memory 

- typically owned: registers, stack 

Process: difficult to communicate, think they are alone 

Thread: communicate via memory, knows there are others 

             multiple threads for each distinct activity of process 

- faster to switch between threads (no major OS operation) 

- Thread Control Block (TCB) stores information 

Communication Mechanisms (6-20) 

Problem: the use of shared memory for message passing 

may cause priority inversion and blocking 

Synchronous communication (“rendez-vous”) 

- when communicating, they have to wait for each other 

- causes problems for maximum blocking time 

- in static RT environments solved offline by transforming 

synchronous interactions into precedence constrains 

Asynchronous communication (“mailbox) 

- sender deposits message into channel, receiver reads 

- done by shared memory buffer, FIFO queue (fixed size) 

7. System Components 

 

General-purpose Processors (7-7) 

- high performance 

 - highly optimized circuits and technology 

 - use of parallelism (pipelining, predictions) 

 - complex memory hierarchy 

- not suited for real-time applications as highly 

unpredictable execution times due to intensive resource 

sharing and dynamic decisions 

- good average performance for large application mix 

- high power consumption 

- Multicore Processors 

        - higher execution performance through parallelism 

        - useful in high-performance embedded systems 

        - interference on shared resources (buses, cache etc.) 

System Specialization (7-13) 

Specialization is main difference between embedded 

systems and general purpose high-volume microprocessors 

- Specialization should respect flexibility 

  - systems should cover a class of applications 

 - required for later changes & debugging 

- System analysis required for identification of application 

properties which benefit from specialization 

Application-Specific Instruction Sets (7-22) 

Microcontrollers / Control Dominated Systems 

- Reactive systems with event driven behavior 

- system description: Finite State Machines or Petri Nets 

Microcontrollers connect interfaces (no computation) 

  - support process scheduling and synchronization 

  - preemption (interrupt), context switch 

  - short latency times 

- low power consumption 

- peripheral units often integrated (timer, buses, AD/DA-C) 

- suited for real-time applications 

Digital Signal Processors (DSPs) /  

Data Dominated Systems (7-26) 

- Streaming-oriented systems with periodic behaviour 

- input description: flow graphs 

DSPs are for computation (signal processing, controlling) 

- optimized for data-flow, only simple control-flow 

- parallel hardware units (VLIW), specialized instruction set 

- high data throughput, zero-overhead loops 

- suited for real-time applications 

Very Long Instruction Word (VLIW): detection of possible 

parallelism by compiler, combine multiple functional units 

Field Programmable Gate Array (FPGA) (7-34) 

- “program hardware by software” 

- granularity of logic units: gate, tables, memory, blocks 

- communication network: crossbar, hierarchical mesh 

- reconfiguration: dynamically adjustable at runtime 

Application-Specific Circuits (ASICs) (7-41) 

- custom-designed circuits for mass production 

- long design times, lack of flexibility, high design costs 

System-on-Chip (SoC) (7-43) 
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8. Communication 

Requirements 

- performance (bandwidth & latency, real-time) 

- efficiency (cost, low power) 

- robustness (fault tolerance, maintainability, safety) 

Time Multiplex Communication (8-5) 

Random Access (8-6) 

No access control, requires low medium utilization 

Improved variant: slotted random access 

TDMA (Time Division Multiple Access) (8-7) 

Communication in statically allocated time slots 

- synchronization among all nodes necessary 

- master node sends out a synchronization frame 

 

CSMA/CD (Carrier Sense MA / Collision Detection) (8-8) 

Try to avoid and detect collisions 

- before transmitting, check whether channel is idle 

- if collision detected, back off / wait 

- repeated collisions result in increasing backoff times 

Token Protocol (Token Ring) (8-9) 

Token value determines which node is transmitting 

- only the token holder may transmit 

 

CSMA/ Collision Avoidance – Flexible TDMA 

(FTDMA) (8-11) 

Reserve % slots for / nodes ; if slot is used, it becomes slice 

- node start transmitting message only during assigned slot 

- % = / : no collision ; % ≤ / : statistical collision avoidance 

 

CSMA/ Collision Resolution (CSMA/CR) (8-12) 

Each node is assigned a unique identification number 

- all nodes wishing to transmit send a binary signal based 

on their identification number; if node detects a dominant 

state while transmitting a passive one, it drops out 

- node with the lowest identification value wins 

Flex Ray (8-14) 

Operation principle: Cycle is subdivided into static and 

dynamic segment. Static segment bases on fixed allocation 

of time slots, dynamic segment for ad-hoc communication 

Static Segment: TDMA  All static slots are the same length 

and are repeated every communication cycle 

Dynamic Segment: Flexible TDMA   minislot is opportunity 

to send a message; if not sent, minislot elapses unused 

Bluetooth (Frequency Multiplex Communication) (8-20) 

Design goals 

- small size, low cost, low energy 

- secure & robust transmission (interference with WLAN) 

Technical Data 

- 2.4 GHz (spectral bandwidth 79 MHz) 

- 10-100m transmission range, 1 Mbit/s bandwidth 

- simultaneous transmission of multimedia & data 

- ad hoc network (de-centralized, dynamic connections) 

Frequency Hopping 

- transmitter jumps between frequencies: efgg hijk/k 

- 79 channels, ordering by pseudo-random sequence 

- Frequency range:   �lmgl + n� opq , n = g … rs 

- Data transmission in time window of flt uk 

- Each packet transmitted on a different frequency 

Network Topologies (8-24) 

Ad-hoc networks 

- all nodes are potentially mobile 

- dynamic emergence of connections 

- hierarchical structure (scatternet) of small nets (piconet) 

Piconet 

- contains 1 master and maximally 7 slaves 

- all nodes inside use the same frequency hopping scheme 

( determined by device address of master BD_ADDR ) 

- connections exist :     - one-to-one 

            - master and all slaves (broadcast) 

Scatternet 

- formed by several piconets with overlapping nodes 

- node can be master in at most one and slave in other nets 

Addressing (8-30) 

Packet format 

- Access Code / BD_ADDR : 82bits, identifies packets 

- Header / AM_ADDR : 54bits, identifies connection 

- Payload : 0 – 2745 bits 

Bluetooth Device Address BD_ADDR : 48 Bits, unique 

Active Member Address AM_ADDR : 

- 3 bits for maximally 7 active slaves in piconet 

- Address “Null” is broadcast to all slaves 

Parked Member Address PM_ADDR : 8 bits 

- in low power state: waiting for communication 
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Connection Types (8-31) 

Synchronous Connection-Oriented (SCO) 

- point-to-point full duplex between master & slaves 

- master reserves slots for transmission regularly 

Asynchronous Connection-Less (ACL) 

- asynchronous service, no slot reservation 

- master transmits spontaneous, slaves answer next 

Frequency Hopping / Time Multiplexing (8-32) 

- packet of the master is followed by a slave packet 

- after each packet, channel / frequency is switched 

 

- master can only start sending in even slot numbers 

- packets have length of 1, 3 or 5 slots (same frequency) 

Modes and States (8-35) 

Modes of operation 

Inquiry: master identifies addresses of neighbors 

Page: master attempts connection with slave 

Connected: connection is established 

States in connection mode 

- active  active in connection to master 

- hold  does not process data packets 

- sniff  awakens at regular intervals 

  checks whether there are packets 

- park  passive, only synchronized 

 

Synchronization in Connection Mode: channel sequence & 

phase of a piconet is determined (by BD_ADDR) of master 

Synchronization in Page Mode: 3-way-handshake to 

synchronize between master and slave; prerequisite for 

establishing a connection 

1. Page:  master transmits own & slave address 

2. Page scan: slave listens 

3. Master page response: slave answers with own address 

4. Slave page response: master sends FHS-packet,  

     which includes channel sequence & phase of piconet 

From Standby to Connection (8-40) 

 

Protocol Hierarchy (8-44) 

Baseband specification: defines packet formats, 

physical & logical channels, error correction, 

synchronization and modes of operations 

Audio specification: defines coding & decoding 

Link manager (LM): authentication & encryption, 

management, connection initiation, transitions 

Host controller interface (HCI): interface host - node 

Link layer control & adaption layer (L2CAP): 

interface for data communication 

RFCOMM: simple transport protool for serial 

connection 

9. Low Power Design 

Power is most important constrain in Embedded Systems 

Power and Energy (9-9) 

� =  v ����  #� 

Minimizing power consumption is important for 

- design of the power supply & voltage regulators 

- the dimensioning of interconnect 

- cooling (decrease temporary heating) 

Minimizing energy consumption is important due to 

- restricted availability of energy (mobile systems) 

- limited battery capacities & long lifetimes needed 

- very high costs of energy (solar panels, in space) 

Power Consumption of CMOS Processor (9-12) 

Dynamic power consumption: charging & discharging �w 

Short circuit power consumption: switching causes shorts 

Leakage: leaking diodes & translators, causes static current 

Power  � ~ y �w z{{H  � 

Energy  � ~ y �w z{{H  � � = y �w z{{H  � #K}KDC% � 

Delay    ~ �w  ~��
�~�� Z ~� �� 

z{{  :  supply voltage 

z� ≪ z{{  : threshold voltage 

y :  switching activity ( = 1 : switch every cycle) 

�w :  load capacity 

� ~ 2
�  ~ ~��

��  : clock frequency 
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Basic Techniques (9-17) 

Power Supply Gating: minimize static power consumption 

(leakage) by cutting off power supply while unit inactive 

Parallelism (9-18) 

Parallelism      Pipelining 

         

� ~ z{{H  � #K}KDC%�                       �H = 1
4 �2                   

VLIW Architectures (9-22) 

Large degree of parallelism & many computational units: 

- explicit parallelism ( parallel instruction set) by compiler 

- parallelization through hardware (difficult & expensive) 

Translation of instruction set 

- done with optimized compiler (no compatibility) 

- on processor with decoder (translation in HW) 

- on processor with dynamic compiler in SW (Transmeta) 

Dynamic Voltage Scaling (DVS) (9-26) 

Adapt voltage & frequency to situation to save energy 

Optimal Strategy: running at a constant frequency/voltage 

minimizes energy consumption for dynamic voltage scaling 

- if a task finishes on deadline, the chosen frequency  

   (voltage) is optimal in terms of energy efficiency 

- if only discrete voltage levels, choose directly above and  

   below the ideal voltage to minimize energy consumption 

YDS Algorithm for Offline Scheduling (9-36) 

Schedule without missing deadlines & minimal energy 

E�=�� , =: /�A�C" �� �!%�% �/ z 

Intensity G in time interval I �, ���: average accumulated 

execution time of all tasks inside the interval 

z��I �, ���� = � �� ∈ z ∶ � ≤ !� < #� ≤ ��� 

��I �, ���� =  � K�  / ��� −  ��
�� ∈ ~�

 

1. Find critical interval (i.e. interval with highest intensity)  

    and schedule tasks inside with EDF 

�@�� = �?�?�  , � = � ∗ �0�:�0;>  

2. Adjust arrival times and deadlines by excluding interval 

3. Run algorithm for revised input and put pieces together 

Online algorithm: run algorithm with known tasks, if new 

ones arrive, update schedule; maximally uses 27 times the 

minimal energy consumption of optimal offline solution 

Dynamic Power Management (DPM) (9-46) 

DPM tries to assign optimal power saving states 

RUN: operational 

IDLE: SW routine may stop the CPU when not in use,  

                while monitoring interrupts 

SLEEP: shutdown of on-chip activity 

DVS Critical frequency (voltage): running at any frequency 

(voltage) below is not worthwhile for execution 

Procrastination Schedule: execute only voltages higher or 

equal to the critical voltage (round up lower ones) 

- procrastinate task execution & sleep as long as possible 

10. Architecture Models 

Dependence graph (DG) (10-4) 

directed graph  � = �z, �� ,     � ⊆ z Q z 

��2, �H� ∈ � ∶  - �2 (immediate) predecessor of �H 

  - �H (immediate) successor      of �2 

- nodes represent tasks, edges represent relations 

- describes order relations for execution of single tasks 

- represents parallelism, not branches in control flow 

          

Control-Data Flow Graph (CDFG) (10-8) 

Description of control structures & data dependencies 

- combines control flow & dependence representation 

Control Flow Graph: finite state machine which represents 

the sequential control flow of the program (i.e. branches) 

- operations within state are written as dependence graph 

Dependence Graph/ Data Flow Graph (DFG): 

- NOP operations represent start and end point (polar) 
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Sequence Graph (SG) (10-11) 

Hierarchy of acyclic & polar directed graphs 

- graph element is a dependence graph of type: 

 - a) operations or tasks 

 - b) hierarchy nodes 

  - CALL  (module call) 

  - BR (branch) 

  - LOOP (iteration) 

  

Marked Graphs (MG) (10-18) 

- mainly used for modeling regular computation (signal flow) 

Marked graph � = �z, �, #CD� consists of 

- nodes (actors)  � ∈ z 

- edges   ! = P�� , �NT ∈ �  , � ⊆ z Q z 

- initial tokens  #CD ∶ � → = 

 

- token correspond to data stored in FIFO queues 

- node is activated if on every input edge there is a token 

- constant # tokens:  # inputs = # outputs on each node 

Implementation in hardware 

- synchronous digital circuit 

 - nodes / actors are combinatorial circuits 

 - edges correspond to synchronous shift registers 

- self-timed asynchronous circuit 

 - actors & FIFO registers are independent units 

 - coordination & synchronization of firing  

                   implemented with handshake protocol 

- software implementation with static / dynamic scheduling 

11. Architecture Synthesis 

Determine a hardware architecture that efficiently 

executes a given algorithm 

- allocation (determine necessary hardware) 

- scheduling (determine timing of operations) 

- binding (determine relations between parts) 

Models (11-5) 

Sequence Graph �] = �z], �]� : z] denotes operations of 

the algorithm, �] the dependence relations 

Resource Graph �� = �z�, ��� , z� = z]  ∪ z� 

z� : resource types of architecture, ��  bipartite graph 

Cost function K ∶ z� → � 

Execution times 8 ∶ �� → � 

Allocation y ∶ z� → �  

denotes number of available instances for each resource 

Binding  ��� � = �?    , ¡�� � = " 

operation �   is implemented on r-th instance of resource �? 

Scheduling  ∶ z] → �     determines starting times 
 

feasible if  P�NT −  ���� ≥ 8����   ∀  P�� , �NT ∈ �] 
 

Latency   ��0� −  ��¢� 

Multiobjective Optimization (11-13) 

Mostly optimize for more than one objective: 

- latency of implemented algorithm 

- hardware cost (memory, communication, ALUs) 

- power & energy consumption 

Pareto Optimum 

- Improving a given configuration without downgrading 

any other aspect is called a pareto improvement 

- if no further improvements can be made, the 

configuration is called pareto optimal (nothing better in all 

aspects → dominates weaker configurations) 

Classification of Scheduling Algorithms (11-19) 

- unlimited resources  ↔  limited resources 

- iterative algorithm: initial solution improved step-by-step 

- constructive algorithm: problem solved in one step 

- transformative algorithm: initial problem formulation is  

   transformed into a (classical) optimization problem 

Scheduling without resource constrains (11-20) 

Every operation gets its own resource; often used as a first 

step to determined upper bounds on feasible schedules 

As Soon As Possible (ASAP) (11-22) top to bottom 

Start at top, schedule task after all predecessors finished 

 ���� = max£  P�NT + 8P�NT¤ , P�N , ��T ∈ �]  

As Late As Possible (ALAP) (11-25)  bottom to top 

Start at bottom, schedule task before earliest successor 

 ���� = min£  P�NT ∀ P�� , �NT ∈ �]¤ − 8���� 

Scheduling with Timing Constrains (11-28) 

Constrains: - deadline : latest finishing time 

  - release time : earliest starting time 

  - relative constrains : differences 

Weighted Constrain Graph: �� = � z� , �� , #� 

Contains a weighted edge for each timing constrain 

An edge P¥¦, ¥§T ∈ ¨© with weight ªP¥¦, ¥§T denotes: 

«P¥§T − «�¥¦�   ≥   ªP¥¦, ¥§T 

 

Bellman-Ford-Algorithm: complexity E�|z�| |��| � 

Iteratively set for all �� ∈ z�  : 

  P�NT ∶= A!Q£  P�NT,  ���� + #P�� , �NT ∶ P�� , �NT ∈ ��¤ 

Starting from  ���� =  −∞ , �� ∈ z�  \ ��¢� ,     ��¢� = 1 
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Scheduling with resource constrains (11-34) 

Minimal latency is defined as 

 

List Scheduling (11-36) 

- static priority, which denotes urgency of being scheduled 

  (e.g. higher priority, the further still away from end) 

- algorithm schedules one time after the other and chooses  

   from the tasks with top-priority 

- heuristic algorithm, doesn’t guarantee optimal scheduling 

      

 

 

 

 

 

 

 

 

Integer Linear Programming (11-42) 

- yields optimal solution, as based on exact description 

- binding already determined (know duration) 

- know earliest & latest starting times from ASAP / ALAP 

 

 

Iterative Algorithms (11-49) 

Consist of a set of indexed equations that are evaluated for 

all values of an index variable (e.g. signal flow graphs, 

marked graphs) 

Representation of iterative algorithms 

- one indexed equation with constant index dependencies 

- equivalent set of indexed equations 

- extended sequence graph denoting the displacements 

- marked graph denoting displacement as data in queue 

- signal flow graph (with displacement �Z2 ) 

- loop program 

Definitions 

Iteration:    set of all operations necessary for computation 

Iteration interval P:   time distance between two iterations 

Throughput 1/P:    iterations per time unit 

Latency L:        maximal time distance between starting and  

       finishing times of operations belonging to one iteration 

Implementation Principles 

- Simple possibility: edges with #�N > 0 are removed and 

the resulting simple sequence graph solved traditionally 

- functional pipelining: Simultaneous execution of data 

sets belonging to different iterations. Successive iterations 

overlap and a higher throughput is obtained 

Solving the synthesis problem using Integer Linear 

Programming: (11-56) 

- use extended sequence graph 

- calculate upper and lower bounds as well as P 

- replace equations (5) and (6) for ILPs 

Dynamic Voltage Scaling (DVS) (11-60) 

We can optimize the energy in case of DVS 

- there are |°| different voltage levels 

- task �� ∈ z] can use one of the execution times 8L����  

  and corresponding energy CL���� 
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12. Various 

Petri Nets (2-47) 

 

- bipartite graph consisting of places and transitions 

- data and control represented by moving tokens 

Firing: enabled if at least one token in every input place 

Remove one from each input and put one to each output 

NutOS & Programming Practice (2-50) 

Creating a thread 

 

 

Terminating a thread 

 

Yield acces to another thread / set priority 

  

Sleep 

  

Posting & waiting for events (2-57) 

 

 

 

 

Laboratory 

 

 

 


