
1

Embedded Systems Summary

Andreas Biri, D-ITET 10.07.15

1. Introduction

Embedded Systems (ES): information processing systems

embedded into a larger project

Cyber-physical system (CPS): must operate dependably,

safely, securely, efficiently and in real-time

Characteristics of Embedded Systems (1-19)

- dependable: reliable, maintainable, available, safe

- efficient: energy, code, run-time, weight, cost

- specialized: dedicated towards certain application

- real-time: must meet constrains of environment

- not programmable by end-user

- fixed run-time requirements (additional power useless)

- criteria: cost, power consumption, predictability

- energy & temperature constrains (often independent)

- energy harvesting important (e.g. zero power systems)

Hard real-time constrain: not meeting that constrain could

result in a catastrophe; answer arriving too late is wrong

Hybrid system: analog and digital system components

Reactive system: in continual interaction with environment

 executes at pace determined by environment

MPSoCs: Multiprocessor systems-on-a-chip (e.g. phone)

2. Software Introduction

Real-Time Systems (2-15)

ES are expected to finish tasks reliably within time bounds

Hard constrain: missing a deadline results in catastrophe

 often in safety-critical applications (aeronautics, brakes)

Soft constrain: missing deadline is undesirable but not fatal

Worst-Case Execution Time (WCET): upper bound on

execution time of all tasks statically known

- difficult to calculate because of parallelism (branch

 prediction, speculation, pipelines) & caches

Best-Case Execution Time (BCET): lower bound for it

Programming Paradigms (2-25)

Time triggered approaches (2-26)

- periodic

- cyclic executive

- generic time-triggered scheduler

- no interrupts except by timer

- deterministic behaviour at run-time

- interaction with environment through polling

Summary

+ deterministic schedule (computed before run-time)

+ shared resources pose no problem

- external communication only via polling

- inflexible (no adaptation to environment)

- long processes have to be split into subtasks

Extension

- allow arbitrary interrupts (not deterministic anymore!)

- allow preemtable background processes

Simple Periodic Time-Triggered Scheduler

Timer interrupts regularly with period P (same for all processes)

- unpredictable starting times for later processes

- mutually exclusive, no sync required for communication

� ��������
�

 < �

Time-Triggered Cyclic Executive Scheduler

processes may have different periods

- period P portioned into frames of length f

- terrible for long processes (need to be split)

Conditions

- Process executes at most once within a frame

� ≤ ���� ∀ �

- Period P is least common multiple of all periods ����

- Periods start and complete within a single frame:

� ≥ ������� ∀ �

- at least one frame boundary between release & deadline

2� − gcd�����, �� ≤ ���� ∀ �

Generic Time-Triggered Scheduler

- precompute schedule a priori offline (if purely TT)

Task-Descriptor List (TDL): contains cyclic schedule for all

activities, considering required precedence and mutual

exclusion -> no explicit coordination at run-time necessary

2

Event triggered approaches (2-36)

- non-preemptive

- preemptive (stack policy, cooperative, multitasking)

Summary

+ dynamic & adaptive

+ can react to environment by receiving interrupts

+ guarantees can be given during run-time or even off-line

- problems with respect to timing

- shared resources have to be coordinated

Non-Preemptive Event-Triggered Scheduling

events are collected in a queue and cannot be preempted

(cannot give guarantees regarding deadlines)

ISR: Interrupt service routine

- event associated with corresponding process

- events emitted by a) external interrupts

 b) processes themselves

- simple communication between processes

- buffer overflow if too many events are generated

- long processes prevent others from running (-> split)

Extension

- preemtable background process if event queue is empty

- timed events enter queue only after time interval elapsed

Preemptive Event-Triggered Scheduling

possible to preempt process, solves problem of long tasks

Stack-based: stack-based context mechanism of function

calls (process = C-style function with own memory space)

- LIFO: restricts flexibility, bad if waiting for external event

- no mutual exclusion; shared resources must be protected

 (e.g. disable interrupt, semaphores)

Processes and CPU (2-43)

Process: unique execution of a program (“instance”)

- has its own state (e.g. register values, memory stack)

- several copies of a program can run simultaneously

Activation record: copy of process state (includes registers)

Context switch: current CPU context goes, next comes

- context of current process is stored (registers, program

 counter, stack pointer)

- execution continues where other process left off

Co-operative Multitasking (2-45)

process allows context switch at cswitch() call

+ predictable where context switch can occur

+ less errors with use of shared resources

- bad programming can stall the system (doesn’t yield)

- real-time behaviour at risk (if switch not possible)

Preemptive Multitasking (2-60)

Scheduler (OS) i) controls when context switches

 ii) determines which process runs next

Scheduler is called / switch enforced by:

 - use of timers / timer interrupts

 - hardware or software interrupts

 - direct call to OS routines to switch context

3. Real-Time Models

Hard: missing its deadline has catastrophic consequences

Soft: meeting its deadline is desirable, but not critical

Schedule: assignment of tasks to the processor

- ���� = 0 : processor is idle at time �

- ���� = � : processor is executing task � at time �

Feasible: tasks can be completed according to constrains

Schedulable: there exists at least one algorithm which can

produce a feasible schedule

Schedule & Timing (3-5)

�� / � task / periodic task �

!� / "� arrival / release time (ready for execution)

�� computation time (required CPU time)

#� / �� absolute / relative deadline #� ≥ "� + ��

%� / �� start /finishing time

�� period (for periodic tasks)

&� phase (start of periodic task)

Derived figures

Lateness '� = �� − #�
delay of a task completion

Tardiness / exceeding time �� = max�0, '��

time exceeded after deadline

Laxity / slack time +� = #� − !� − ��

maximal time a task can be delayed on its activation to

complete within deadline

3

Precedence Constrains: describes the interdependencies

between tasks (“Which one has to be executed first?”)

Classification of Scheduling Algorithms (3-11)

Preemptive algorithm: running task can be interrupted at

any time to assign the processor to another active task

Non-preemptive algorithm: once started, the task is

executed until completion (no interruptions)

Static algorithm: scheduling decisions are based on fixed

parameters, assigned to tasks before activation (offline)

Dynamic algorithm: scheduling decisions based on

dynamic parameters that may change during system

execution (e.g. CPU bursts, I/O waits)

Schedule metrics (3-13)

Optimal algorithm: minimizes given cost function

Heuristic algorithm: tends to find optimal schedule

Average response time

�,- = 1
/ �� �� − "� �

0

�12

Total completion time

�3 = max���� − min�"��

Weighted sum of response time

�6 = ∑ 8���� − "�� ∑ 8�9

Maximum lateness

':;< = max� ��� − #��

Number of late tasks

=>;?@ = � A�%%����
0

�12
 , A�%%���� = B 0 �� ≤ #�1 CD%C

4. Periodic/Aperiodic Tasks

Aperiodic Tasks (4-3)

Equal arrival times & non-preemptive

 - EDD (Jackson) for independent tasks

 - LDF (Lawler) for dependent tasks

Arbitrary arrival times & preemptive

 - EDF (Horn) for independent tasks

 - EDF*(Chetto) for dependent tasks

Earliest Deadline Due (EDD) (4-4)

equal arrival times & non-preemptive : E�/ log�/��

Algorithm: Task with earliest deadline is processed first

Jackson’s rule: processing in order of non-decreasing

deadlines is optimal with respect to minimizing the

maximum lateness

Earliest Deadline First (EDF) (4-7)

arbitrary arrival times & preemptive : E�/H�

Algorithm: Task with earliest deadline is processed first; if

new task arrives with earlier deadline, current task is

interrupted (just like EDD, but with recalculation)

Horn’s rule: executing the task with the earliest absolute

deadline among the ready tasks at any time is optimal with

respect to minimizing the maximum lateness

���� task executing in the slice I �, � + 1�

���� ready task which has the earliest deadline

�J��� time at which the next slice of ���� is executed

Guarantee:

Worst case finishing time: �� = � + ∑ KL����L12

EDF guarantee condition: �� ≤ #� ∀ � = 1, … , /

A new tasks is accepted if the schedule remains feasible

Earliest Deadline First* (EDF*) (4-12)

determines a feasible schedule for tasks with precedence

constrains if there exists one

Algorithm: Modify release times & deadlines, then EDF

Modification of release times:

1. Start at the top (roots to leaves)

2. Search the predecessor which takes the longest:

"N∗ = maxP "N , A!QP "�∗ + �� ∶ �� → �NT T

Modification of deadlines:

1. Start at the bottom (leaves to roots)

2. Search the successor which starts the earliest:

#�∗ = minP #� , A�/P #N∗ − �N ∶ �� → �N T T

Latest Deadline First (LDF) (U2.2)

Non-preemptive scheduling for precedence constrains

Algorithm:

1. A precedence graph is constructed

2. Leaves to roots: Select task with latest deadline among

all available tasks to be scheduled last

3. At runtime: tasks are extracted from head of the queue:

first task inserted into queue will be executed last (FILO)

Shortest Job First (SJF)

Minimizes average waiting time

4

Periodic Tasks (4-17)

Deadline equals period:

 - Rate-monotonic (RM) for static priority

 - EDF for dynamic priority

Deadline smaller than period:

 - Deadline-monotonic (DM) for static priority

 - EDF* for dynamic priority

Terminology

 �,N denotes the j-th instance of task i

"�,N / %�,N / ��,N release / start / finishing time

&� phase of task i (release time of its first instance)

�� relative deadline of task i (same for all instances)

�� period with which the task is regularly activated

�� worst case execution time (same for all instances)

Rate Monotonic Scheduling (RM) (4-22)

RM is optimal among all fixed-priority assignments, i.e. no

other fixed-priority algorithm can schedule a task set which

cannot be scheduled with RM

- static priority assignment (offline, as not changed)

- preemptive (by a task with higher priority)

- deadlines equals to the period (�� ≤ �� = ��)

Algorithm: tasks with higher request rate / shorter period

will have higher priorities and interrupt lower ones

Critical instant: task is release simultaneously with all

higher priority tasks / release creates largest response time

Schedulability analysis

Sufficient but not necessary (U : processor utilization factor):

U = � ����

0

�12
 ≤ / P 22 0⁄ − 1T

Sufficient and necessary: same as for DM

Deadline Monotonic Scheduling (DM) (4-34)

Deadlines may be smaller than the period:

�� ≤ �� ≤ ��
Algorithm: tasks with smaller relative deadlines will have

higher priorities and interrupt tasks with lower priority

Schedulability analysis

Sufficient but not necessary:

� ����

0

�12
 ≤ / P 22 0⁄ − 1T

Sufficient and necessary:

- worst-case demand when all tasks are released

 simultaneously (critical instances)

- worst case interference W� for task i :

W� = � X �
�N Y

�Z2

N12
 �N

where tasks with [< � have higher priority

- Longest response time \� = �� + W� (at critical instance)

- For schedulability test: find smallest \� which satisfies

\� = �� + � X \��N Y
�Z2

N12
 �N → \� ≤ �� ∀ �

Earliest Deadline First (EDF) Scheduling (4-41)

Active task with earliest deadline has highest priority

- dynamic priority assignment

- preemptive

- �� ≤ ��
Schedulability test ONLY for �� = ��
Necessary & sufficient: schedulable with EDF if and only if

� ����

0

�12
 = U ≤ 1

U: average processor utilisation

Problem of Mixed Tasks Sets (4-47)

Periodic tasks: time-driven, execute regular critical control

activities with hard timing constrains

Aperiodic tasks: event-driven; hard, soft or no real-time

Sporadic tasks: aperiodic task characterized by a minimum

interarrival time (enables offline guarantee on constrains)

Background scheduling (4-48)

RM & EDF scheduling of periodic tasks: processing of

aperiodic tasks in the background / when no periodic one

RM Polling Server (PS) (4-50)

Idea: Introduce artificial periodic task which services

aperiodic requests as soon as possible

Function of polling server (PS): instantiated at regular

intervals �] and serves any pending aperiodic requests

If none, the process is suspended (time not preserved!)

Disadvantage: if an aperiodic request arrives just after the

server is suspended, it must wait for next polling period

Schedulability analysis: just like RM, suff. but not necessary

�]�] + � ����

0

�12
 ≤ � / + 1� P 22 �0^2�⁄ − 1T

Sufficient if aperiodic task finishes before a new arrives

_ 1 + ` �;�] a b �] ≤ �;

5

EDF – Total Bandwidth Server (4-55)

When k-th aperiodic request arrives at time � = "L, it

receives a deadline

#L = max� "L , #LZ2 � + �LU]

U] = 1 − Uc : server utilization factor / bandwidth

Once a deadline is assigned, the request is inserted into

the ready queue as any other periodic instance

Schedulability test: necessary & sufficient

Uc + U] ≤ 1

5. Resource Sharing

Common resources: data structures, variables, main

memory area, file, set of registers, I/O unit

Critical section: piece of code, in which access to shared

resources requires mutual exclusion

blocked: task waits for an exclusive resource to be freed

holds: task is in possession of said resource

free: exclusive resource after leaving critical section

Semaphores (5-5)

d� protects each exclusive resource \�
wait�d�� : start of critical section, requests entrance

signal�d�� : end of critical section, frees resource

Priority Inversion (5-7)

- low-priority task holds resource which prevents high-

priority task from running

- meanwhile, a medium-priority task can preempt the low-

priority task and execute with the high-priority blocked

“Solution”: disallow preemption in critical sections

- unnecessary blocking of unrelated tasks with higher prio

Priority Inheritance Protocol (PIP) (5-10)

assume priority of highest blocked task in critical section

�� : nominal priority

�� ≥ �� : active priority

Direct Blocking: lower-priority task blocks higher task

Push-through Blocking: medium-priority task is blocked by

low-priority task which has inherited a higher priority

6. Real-Time OS

Deficits of Desktop OS

- monolithic kernel too feature rich, takes too much space

- not: modular, fault-tolerant, configurable, modifiable

- not power optimized

- timing uncertainty too large

Advantages of Embedded OS

- OS can be fitted to each individual need: remove unused

functions, conditions compilation depending on hardware,

replace dynamic data by static data, advanced compiling

- improved predictability (everything through scheduler)

- interrupts can be employed by all processes

- software tested and considered reliable (no protection)

Real-Time OS (6-10)

Requirements

- predictability of time-behaviour

 - upper bound on the execution time of tasks

 - almost all activities controlled by scheduler

- management of timing and scheduling

 - inclusion of deadlines

 - OS must provide precise time services

- speed

Main functionality of RTOS-Kernels (6-13)

Process management (6-13)

- execution of quasi-parallel tasks

 - maintain process states & process queues

 - preemptive scheduling (fast context switch)

 - quick interrupt handling

- CPU scheduling: guarantee deadlines & fairness

- Process synchronization (semaphores, mutual exclusion)

- Inter-process communication (buffering)

- real-time clock for internal time reference

6

Process States (6-15)

run: starts executing on the processor

ready: ready to execute but not assigned yet

wait: task is waiting for a semaphore for access

idle: completed execution & waiting for next period

Threads (6-17)

A basic unit of CPU utilization, similar to a process

- typically shared: memory

- typically owned: registers, stack

Process: difficult to communicate, think they are alone

Thread: communicate via memory, knows there are others

 multiple threads for each distinct activity of process

- faster to switch between threads (no major OS operation)

- Thread Control Block (TCB) stores information

Communication Mechanisms (6-20)

Problem: the use of shared memory for message passing

may cause priority inversion and blocking

Synchronous communication (“rendez-vous”)

- when communicating, they have to wait for each other

- causes problems for maximum blocking time

- in static RT environments solved offline by transforming

synchronous interactions into precedence constrains

Asynchronous communication (“mailbox)

- sender deposits message into channel, receiver reads

- done by shared memory buffer, FIFO queue (fixed size)

7. System Components

General-purpose Processors (7-7)

- high performance

 - highly optimized circuits and technology

 - use of parallelism (pipelining, predictions)

 - complex memory hierarchy

- not suited for real-time applications as highly

unpredictable execution times due to intensive resource

sharing and dynamic decisions

- good average performance for large application mix

- high power consumption

- Multicore Processors

 - higher execution performance through parallelism

 - useful in high-performance embedded systems

 - interference on shared resources (buses, cache etc.)

System Specialization (7-13)

Specialization is main difference between embedded

systems and general purpose high-volume microprocessors

- Specialization should respect flexibility

 - systems should cover a class of applications

 - required for later changes & debugging

- System analysis required for identification of application

properties which benefit from specialization

Application-Specific Instruction Sets (7-22)

Microcontrollers / Control Dominated Systems

- Reactive systems with event driven behavior

- system description: Finite State Machines or Petri Nets

Microcontrollers connect interfaces (no computation)

 - support process scheduling and synchronization

 - preemption (interrupt), context switch

 - short latency times

- low power consumption

- peripheral units often integrated (timer, buses, AD/DA-C)

- suited for real-time applications

Digital Signal Processors (DSPs) /

Data Dominated Systems (7-26)

- Streaming-oriented systems with periodic behaviour

- input description: flow graphs

DSPs are for computation (signal processing, controlling)

- optimized for data-flow, only simple control-flow

- parallel hardware units (VLIW), specialized instruction set

- high data throughput, zero-overhead loops

- suited for real-time applications

Very Long Instruction Word (VLIW): detection of possible

parallelism by compiler, combine multiple functional units

Field Programmable Gate Array (FPGA) (7-34)

- “program hardware by software”

- granularity of logic units: gate, tables, memory, blocks

- communication network: crossbar, hierarchical mesh

- reconfiguration: dynamically adjustable at runtime

Application-Specific Circuits (ASICs) (7-41)

- custom-designed circuits for mass production

- long design times, lack of flexibility, high design costs

System-on-Chip (SoC) (7-43)

7

8. Communication

Requirements

- performance (bandwidth & latency, real-time)

- efficiency (cost, low power)

- robustness (fault tolerance, maintainability, safety)

Time Multiplex Communication (8-5)

Random Access (8-6)

No access control, requires low medium utilization

Improved variant: slotted random access

TDMA (Time Division Multiple Access) (8-7)

Communication in statically allocated time slots

- synchronization among all nodes necessary

- master node sends out a synchronization frame

CSMA/CD (Carrier Sense MA / Collision Detection) (8-8)

Try to avoid and detect collisions

- before transmitting, check whether channel is idle

- if collision detected, back off / wait

- repeated collisions result in increasing backoff times

Token Protocol (Token Ring) (8-9)

Token value determines which node is transmitting

- only the token holder may transmit

CSMA/ Collision Avoidance – Flexible TDMA

(FTDMA) (8-11)

Reserve % slots for / nodes ; if slot is used, it becomes slice

- node start transmitting message only during assigned slot

- % = / : no collision ; % ≤ / : statistical collision avoidance

CSMA/ Collision Resolution (CSMA/CR) (8-12)

Each node is assigned a unique identification number

- all nodes wishing to transmit send a binary signal based

on their identification number; if node detects a dominant

state while transmitting a passive one, it drops out

- node with the lowest identification value wins

Flex Ray (8-14)

Operation principle: Cycle is subdivided into static and

dynamic segment. Static segment bases on fixed allocation

of time slots, dynamic segment for ad-hoc communication

Static Segment: TDMA All static slots are the same length

and are repeated every communication cycle

Dynamic Segment: Flexible TDMA minislot is opportunity

to send a message; if not sent, minislot elapses unused

Bluetooth (Frequency Multiplex Communication) (8-20)

Design goals

- small size, low cost, low energy

- secure & robust transmission (interference with WLAN)

Technical Data

- 2.4 GHz (spectral bandwidth 79 MHz)

- 10-100m transmission range, 1 Mbit/s bandwidth

- simultaneous transmission of multimedia & data

- ad hoc network (de-centralized, dynamic connections)

Frequency Hopping

- transmitter jumps between frequencies: efgg hijk/k

- 79 channels, ordering by pseudo-random sequence

- Frequency range: �lmgl + n� opq , n = g … rs

- Data transmission in time window of flt uk

- Each packet transmitted on a different frequency

Network Topologies (8-24)

Ad-hoc networks

- all nodes are potentially mobile

- dynamic emergence of connections

- hierarchical structure (scatternet) of small nets (piconet)

Piconet

- contains 1 master and maximally 7 slaves

- all nodes inside use the same frequency hopping scheme

(determined by device address of master BD_ADDR)

- connections exist : - one-to-one

 - master and all slaves (broadcast)

Scatternet

- formed by several piconets with overlapping nodes

- node can be master in at most one and slave in other nets

Addressing (8-30)

Packet format

- Access Code / BD_ADDR : 82bits, identifies packets

- Header / AM_ADDR : 54bits, identifies connection

- Payload : 0 – 2745 bits

Bluetooth Device Address BD_ADDR : 48 Bits, unique

Active Member Address AM_ADDR :

- 3 bits for maximally 7 active slaves in piconet

- Address “Null” is broadcast to all slaves

Parked Member Address PM_ADDR : 8 bits

- in low power state: waiting for communication

8

Connection Types (8-31)

Synchronous Connection-Oriented (SCO)

- point-to-point full duplex between master & slaves

- master reserves slots for transmission regularly

Asynchronous Connection-Less (ACL)

- asynchronous service, no slot reservation

- master transmits spontaneous, slaves answer next

Frequency Hopping / Time Multiplexing (8-32)

- packet of the master is followed by a slave packet

- after each packet, channel / frequency is switched

- master can only start sending in even slot numbers

- packets have length of 1, 3 or 5 slots (same frequency)

Modes and States (8-35)

Modes of operation

Inquiry: master identifies addresses of neighbors

Page: master attempts connection with slave

Connected: connection is established

States in connection mode

- active active in connection to master

- hold does not process data packets

- sniff awakens at regular intervals

 checks whether there are packets

- park passive, only synchronized

Synchronization in Connection Mode: channel sequence &

phase of a piconet is determined (by BD_ADDR) of master

Synchronization in Page Mode: 3-way-handshake to

synchronize between master and slave; prerequisite for

establishing a connection

1. Page: master transmits own & slave address

2. Page scan: slave listens

3. Master page response: slave answers with own address

4. Slave page response: master sends FHS-packet,

 which includes channel sequence & phase of piconet

From Standby to Connection (8-40)

Protocol Hierarchy (8-44)

Baseband specification: defines packet formats,

physical & logical channels, error correction,

synchronization and modes of operations

Audio specification: defines coding & decoding

Link manager (LM): authentication & encryption,

management, connection initiation, transitions

Host controller interface (HCI): interface host - node

Link layer control & adaption layer (L2CAP):

interface for data communication

RFCOMM: simple transport protool for serial

connection

9. Low Power Design

Power is most important constrain in Embedded Systems

Power and Energy (9-9)

� = v ���� #�

Minimizing power consumption is important for

- design of the power supply & voltage regulators

- the dimensioning of interconnect

- cooling (decrease temporary heating)

Minimizing energy consumption is important due to

- restricted availability of energy (mobile systems)

- limited battery capacities & long lifetimes needed

- very high costs of energy (solar panels, in space)

Power Consumption of CMOS Processor (9-12)

Dynamic power consumption: charging & discharging �w

Short circuit power consumption: switching causes shorts

Leakage: leaking diodes & translators, causes static current

Power � ~ y �w z{{H �

Energy � ~ y �w z{{H � � = y �w z{{H � #K}KDC% �

Delay ~ �w ~��
�~�� Z ~� ��

z{{ : supply voltage

z� ≪ z{{ : threshold voltage

y : switching activity (= 1 : switch every cycle)

�w : load capacity

� ~ 2
� ~ ~��

�� : clock frequency

9

Basic Techniques (9-17)

Power Supply Gating: minimize static power consumption

(leakage) by cutting off power supply while unit inactive

Parallelism (9-18)

Parallelism Pipelining

� ~ z{{H � #K}KDC%� �H = 1
4 �2

VLIW Architectures (9-22)

Large degree of parallelism & many computational units:

- explicit parallelism (parallel instruction set) by compiler

- parallelization through hardware (difficult & expensive)

Translation of instruction set

- done with optimized compiler (no compatibility)

- on processor with decoder (translation in HW)

- on processor with dynamic compiler in SW (Transmeta)

Dynamic Voltage Scaling (DVS) (9-26)

Adapt voltage & frequency to situation to save energy

Optimal Strategy: running at a constant frequency/voltage

minimizes energy consumption for dynamic voltage scaling

- if a task finishes on deadline, the chosen frequency

 (voltage) is optimal in terms of energy efficiency

- if only discrete voltage levels, choose directly above and

 below the ideal voltage to minimize energy consumption

YDS Algorithm for Offline Scheduling (9-36)

Schedule without missing deadlines & minimal energy

E�=�� , =: /�A�C" �� �!%�% �/ z

Intensity G in time interval I �, ���: average accumulated

execution time of all tasks inside the interval

z��I �, ���� = � �� ∈ z ∶ � ≤ !� < #� ≤ ���

��I �, ���� = � K� / ��� − ��
�� ∈ ~�

1. Find critical interval (i.e. interval with highest intensity)

 and schedule tasks inside with EDF

�@�� = �?�?� , � = � ∗ �0�:�0;>

2. Adjust arrival times and deadlines by excluding interval

3. Run algorithm for revised input and put pieces together

Online algorithm: run algorithm with known tasks, if new

ones arrive, update schedule; maximally uses 27 times the

minimal energy consumption of optimal offline solution

Dynamic Power Management (DPM) (9-46)

DPM tries to assign optimal power saving states

RUN: operational

IDLE: SW routine may stop the CPU when not in use,

 while monitoring interrupts

SLEEP: shutdown of on-chip activity

DVS Critical frequency (voltage): running at any frequency

(voltage) below is not worthwhile for execution

Procrastination Schedule: execute only voltages higher or

equal to the critical voltage (round up lower ones)

- procrastinate task execution & sleep as long as possible

10. Architecture Models

Dependence graph (DG) (10-4)

directed graph � = �z, �� , � ⊆ z Q z

��2, �H� ∈ � ∶ - �2 (immediate) predecessor of �H

 - �H (immediate) successor of �2

- nodes represent tasks, edges represent relations

- describes order relations for execution of single tasks

- represents parallelism, not branches in control flow

Control-Data Flow Graph (CDFG) (10-8)

Description of control structures & data dependencies

- combines control flow & dependence representation

Control Flow Graph: finite state machine which represents

the sequential control flow of the program (i.e. branches)

- operations within state are written as dependence graph

Dependence Graph/ Data Flow Graph (DFG):

- NOP operations represent start and end point (polar)

10

Sequence Graph (SG) (10-11)

Hierarchy of acyclic & polar directed graphs

- graph element is a dependence graph of type:

 - a) operations or tasks

 - b) hierarchy nodes

 - CALL (module call)

 - BR (branch)

 - LOOP (iteration)

Marked Graphs (MG) (10-18)

- mainly used for modeling regular computation (signal flow)

Marked graph � = �z, �, #CD� consists of

- nodes (actors) � ∈ z

- edges ! = P�� , �NT ∈ � , � ⊆ z Q z

- initial tokens #CD ∶ � → =

- token correspond to data stored in FIFO queues

- node is activated if on every input edge there is a token

- constant # tokens: # inputs = # outputs on each node

Implementation in hardware

- synchronous digital circuit

 - nodes / actors are combinatorial circuits

 - edges correspond to synchronous shift registers

- self-timed asynchronous circuit

 - actors & FIFO registers are independent units

 - coordination & synchronization of firing

 implemented with handshake protocol

- software implementation with static / dynamic scheduling

11. Architecture Synthesis

Determine a hardware architecture that efficiently

executes a given algorithm

- allocation (determine necessary hardware)

- scheduling (determine timing of operations)

- binding (determine relations between parts)

Models (11-5)

Sequence Graph �] = �z], �]� : z] denotes operations of

the algorithm, �] the dependence relations

Resource Graph �� = �z�, ��� , z� = z] ∪ z�

z� : resource types of architecture, �� bipartite graph

Cost function K ∶ z� → �

Execution times 8 ∶ �� → �

Allocation y ∶ z� → �

denotes number of available instances for each resource

Binding ��� � = �? , ¡�� � = "

operation � is implemented on r-th instance of resource �?

Scheduling ∶ z] → � determines starting times

feasible if P�NT − ���� ≥ 8���� ∀ P�� , �NT ∈ �]

Latency ��0� − ��¢�

Multiobjective Optimization (11-13)

Mostly optimize for more than one objective:

- latency of implemented algorithm

- hardware cost (memory, communication, ALUs)

- power & energy consumption

Pareto Optimum

- Improving a given configuration without downgrading

any other aspect is called a pareto improvement

- if no further improvements can be made, the

configuration is called pareto optimal (nothing better in all

aspects → dominates weaker configurations)

Classification of Scheduling Algorithms (11-19)

- unlimited resources ↔ limited resources

- iterative algorithm: initial solution improved step-by-step

- constructive algorithm: problem solved in one step

- transformative algorithm: initial problem formulation is

 transformed into a (classical) optimization problem

Scheduling without resource constrains (11-20)

Every operation gets its own resource; often used as a first

step to determined upper bounds on feasible schedules

As Soon As Possible (ASAP) (11-22) top to bottom

Start at top, schedule task after all predecessors finished

 ���� = max£ P�NT + 8P�NT¤ , P�N , ��T ∈ �]

As Late As Possible (ALAP) (11-25) bottom to top

Start at bottom, schedule task before earliest successor

 ���� = min£ P�NT ∀ P�� , �NT ∈ �]¤ − 8����

Scheduling with Timing Constrains (11-28)

Constrains: - deadline : latest finishing time

 - release time : earliest starting time

 - relative constrains : differences

Weighted Constrain Graph: �� = � z� , �� , #�

Contains a weighted edge for each timing constrain

An edge P¥¦, ¥§T ∈ ¨© with weight ªP¥¦, ¥§T denotes:

«P¥§T − «�¥¦� ≥ ªP¥¦, ¥§T

Bellman-Ford-Algorithm: complexity E�|z�| |��| �

Iteratively set for all �� ∈ z� :

 P�NT ∶= A!Q£ P�NT, ���� + #P�� , �NT ∶ P�� , �NT ∈ ��¤

Starting from ���� = −∞ , �� ∈ z� \ ��¢� , ��¢� = 1

11

Scheduling with resource constrains (11-34)

Minimal latency is defined as

List Scheduling (11-36)

- static priority, which denotes urgency of being scheduled

 (e.g. higher priority, the further still away from end)

- algorithm schedules one time after the other and chooses

 from the tasks with top-priority

- heuristic algorithm, doesn’t guarantee optimal scheduling

Integer Linear Programming (11-42)

- yields optimal solution, as based on exact description

- binding already determined (know duration)

- know earliest & latest starting times from ASAP / ALAP

Iterative Algorithms (11-49)

Consist of a set of indexed equations that are evaluated for

all values of an index variable (e.g. signal flow graphs,

marked graphs)

Representation of iterative algorithms

- one indexed equation with constant index dependencies

- equivalent set of indexed equations

- extended sequence graph denoting the displacements

- marked graph denoting displacement as data in queue

- signal flow graph (with displacement �Z2)

- loop program

Definitions

Iteration: set of all operations necessary for computation

Iteration interval P: time distance between two iterations

Throughput 1/P: iterations per time unit

Latency L: maximal time distance between starting and

 finishing times of operations belonging to one iteration

Implementation Principles

- Simple possibility: edges with #�N > 0 are removed and

the resulting simple sequence graph solved traditionally

- functional pipelining: Simultaneous execution of data

sets belonging to different iterations. Successive iterations

overlap and a higher throughput is obtained

Solving the synthesis problem using Integer Linear

Programming: (11-56)

- use extended sequence graph

- calculate upper and lower bounds as well as P

- replace equations (5) and (6) for ILPs

Dynamic Voltage Scaling (DVS) (11-60)

We can optimize the energy in case of DVS

- there are |°| different voltage levels

- task �� ∈ z] can use one of the execution times 8L����

 and corresponding energy CL����

12

12. Various

Petri Nets (2-47)

- bipartite graph consisting of places and transitions

- data and control represented by moving tokens

Firing: enabled if at least one token in every input place

Remove one from each input and put one to each output

NutOS & Programming Practice (2-50)

Creating a thread

Terminating a thread

Yield acces to another thread / set priority

Sleep

Posting & waiting for events (2-57)

Laboratory

