Embedded Systems Summary

Andreas Biri, D-ITET 10.07.15

1. Introduction

Embedded Systems (ES): information processing systems
embedded into a larger project

Cyber-physical system (CPS): must operate dependably,
safely, securely, efficiently and in real-time

Characteristics of Embedded Systems (1-19)

- dependable: reliable, maintainable, available, safe

- efficient: energy, code, run-time, weight, cost
- specialized: dedicated towards certain application
- real-time: must meet constrains of environment

- not programmable by end-user

- fixed run-time requirements (additional power useless)
- criteria: cost, power consumption, predictability

- energy & temperature constrains (often independent)

- energy harvesting important (e.g. zero power systems)

Hard real-time constrain: not meeting that constrain could
result in a catastrophe; answer arriving too late is wrong

Hybrid system: analog and digital system components

Reactive system: in continual interaction with environment
executes at pace determined by environment

MPSoCs: Multiprocessor systems-on-a-chip (e.g. phone)

2. Software Introduction

Real-Time Systems (2-15)

ES are expected to finish tasks reliably within time bounds

Hard constrain: missing a deadline results in catastrophe
often in safety-critical applications (aeronautics, brakes)

Soft constrain: missing deadline is undesirable but not fatal

Worst-Case Execution Time (WCET): upper bound on

execution time of all tasks statically known

- difficult to calculate because of parallelism (branch
prediction, speculation, pipelines) & caches

Best-Case Execution Time (BCET): lower bound for it

Programming Paradigms (2-25)

Time triggered approaches (2-26)
- periodic

- cyclic executive

- generic time-triggered scheduler

- no interrupts except by timer
- deterministic behaviour at run-time
- interaction with environment through polling

Summary
+ deterministic schedule (computed before run-time)
+ shared resources pose no problem

- external communication only via polling
- inflexible (no adaptation to environment)
- long processes have to be split into subtasks

Extension
- allow arbitrary interrupts (not deterministic anymore!)
- allow preemtable background processes

Simple Periodic Time-Triggered Scheduler

Timer interrupts regularly with period P (same for all processes)

T, T, |1
t(0)

T T, W [n] T [T

t

P

- unpredictable starting times for later processes
- mutually exclusive, no sync required for communication

z WCET(T;) <P
i

Time-Triggered Cyclic Executive Scheduler

processes may have different periods

T T (v T m [T T T[T,
4 6 8 10 16 18 20

2 12 14

o

f P
- period P portioned into frames of length f
- terrible for long processes (need to be split)

Conditions
- Process executes at most once within a frame
f<plk) Vk

- Period P is least common multiple of all periods p (k)
- Periods start and complete within a single frame:
f=WCET(k) Vk

- at least one frame boundary between release & deadline
2f —ged(p(k), f) < D(k) Yk

Generic Time-Triggered Scheduler

- precompute schedule a priori offline (if purely TT)

Task-Descriptor List (TDL): contains cyclic schedule for all
activities, considering required precedence and mutual
exclusion -> no explicit coordination at run-time necessary

Event triggered approaches (2-36)
- non-preemptive
- preemptive (stack policy, cooperative, multitasking)

Summary

+ dynamic & adaptive

+ can react to environment by receiving interrupts

+ guarantees can be given during run-time or even off-line

- problems with respect to timing
- shared resources have to be coordinated

Non-Preemptive Event-Triggered Scheduling

events are collected in a queue and cannot be preempted
(cannot give guarantees regarding deadlines)
IS processes

Q/’O D Peseae

extract event

interrupts

event

event queue
ISR: Interrupt service routine
- event associated with corresponding process
- events emitted by a) external interrupts
b) processes themselves
- simple communication between processes
- buffer overflow if too many events are generated

- long processes prevent others from running (-> split)

Extension
- preemtable background process if event queue is empty
- timed events enter queue only after time interval elapsed

Preemptive Event-Triggered Scheduling

possible to preempt process, solves problem of long tasks

Stack-based: stack-based context mechanism of function
calls (process = C-style function with own memory space)

- LIFO: restricts flexibility, bad if waiting for external event
- no mutual exclusion; shared resources must be protected
(e.g. disable interrupt, semaphores)

Processes and CPU (2-43)

Process: unique execution of a program (“instance”)
- has its own state (e.g. register values, memory stack)
- several copies of a program can run simultaneously

Activation record: copy of process state (includes registers)

Context switch: current CPU context goes, next comes

- context of current process is stored (registers, program
counter, stack pointer)

- execution continues where other process left off

Co-operative Multitasking (2-45)

process allows context switch at cswitch() call

+ predictable where context switch can occur
+ less errors with use of shared resources

- bad programming can stall the system (doesn’t yield)
- real-time behaviour at risk (if switch not possible)

Preemptive Multitasking (2-60)

Scheduler (OS) i) controls when context switches
ii) determines which process runs next

Scheduler is called / switch enforced by:
- use of timers / timer interrupts
- hardware or software interrupts
- direct call to OS routines to switch context

3. Real-Time Models

Hard: missing its deadline has catastrophic consequences

Soft: meeting its deadline is desirable, but not critical

Schedule: assignment of tasks to the processor
- o(t) = 0: processor is idle at time t
- o(t) =i :processor is executing task i at time t

Feasible: tasks can be completed according to constrains

Schedulable: there exists at least one algorithm which can
produce a feasible schedule

Schedule & Timing (3-5)

Ji; /T task/ periodic task i

a; /r; arrival / release time (ready for execution)
C; computation time (required CPU time)
d; / D; absolute / relative deadline di=zr+C;
s; / fi start [finishing time
T; period (for periodic tasks)

D; phase (start of periodic task)

a; S [di

Derived figures

Lateness Li=f;—d;
delay of a task completion

Tardiness / exceeding time E; = max(0, L;)

time exceeded after deadline
Laxity / slack time X, =di—a;,—C;

maximal time a task can be delayed on its activation to
complete within deadline

Precedence Constrains: describes the interdependencies
between tasks (“Which one has to be executed first?”)

Classification of Scheduling Algorithms (3-11)

Preemptive algorithm: running task can be interrupted at
any time to assign the processor to another active task

Non-preemptive algorithm: once started, the task is
executed until completion (no interruptions)

Static algorithm: scheduling decisions are based on fixed
parameters, assigned to tasks before activation (offline)

Dynamic algorithm: scheduling decisions based on
dynamic parameters that may change during system
execution (e.g. CPU bursts, 1/0 waits)

Schedule metrics (3-13)

Optimal algorithm: minimizes given cost function
Heuristic algorithm: tends to find optimal schedule

Average response time

t7=%i(fi—n->

Total completion time

t. = max(f;) — min(r;)

Weighted sum of response time

t, = 2w (fi _ri)/EWi

Maximum lateness

Lmax = max(ﬁ - dl)
i

Number of late tasks

0 fi<4d;
1 else

Nigte = zn:miss(fi) , miss(f,) = {

4. Periodic/Aperiodic Tasks

Aperiodic Tasks (4-3)

Equal arrival times & non-preemptive
- EDD (Jackson)
- LDF (Lawler)

for independent tasks
for dependent tasks

Arbitrary arrival times & preemptive
- EDF (Horn)
- EDF*(Chetto)

for independent tasks
for dependent tasks

Earliest Deadline Due (EDD) (4-4)

equal arrival times & non-preemptive : 0(nlog(n))

Algorithm: Task with earliest deadline is processed first

Jackson’s rule: processing in order of non-decreasing
deadlines is optimal with respect to minimizing the
maximum lateness

Earliest Deadline First (EDF) (4-7)

arbitrary arrival times & preemptive : 0(n?)

Algorithm: Task with earliest deadline is processed first; if
new task arrives with earlier deadline, current task is
interrupted (just like EDD, but with recalculation)

Horn’s rule: executing the task with the earliest absolute
deadline among the ready tasks at any time is optimal with
respect to minimizing the maximum lateness

o(t) task executingin theslice [t,t + 1)
E(t) ready task which has the earliest deadline
tg(t) time at which the next slice of E(t) is executed

Guarantee:

Worst case finishing time: fi=t+ Y c ()

EDF guarantee condition: fi<d; vi=1,..,n

A new tasks is accepted if the schedule remains feasible

Earliest Deadline First* (EDF*) (4-12)
determines a feasible schedule for tasks with precedence
constrains if there exists one

Algorithm: Modify release times & deadlines, then EDF

Modification of release times:

1. Start at the top (roots to leaves)
2. Search the predecessor which takes the longest:

r].* = max(r}-,max(ri* + Ci :]i _)]]))

Modification of deadlines:

1. Start at the bottom (/leaves to roots)
2. Search the successor which starts the earliest:

d; =min(d; ,min(d; = C;: ;> J;))

Latest Deadline First (LDF) (u2.2)

Non-preemptive scheduling for precedence constrains

Algorithm:
1. A precedence graph is constructed

2. Leaves to roots: Select task with latest deadline among
all available tasks to be scheduled last

3. At runtime: tasks are extracted from head of the queue:
first task inserted into queue will be executed last (FILO)

Shortest Job First (SJF)

Minimizes average waiting time

Periodic Tasks (4-17)

Deadline equals period:
- Rate-monotonic (RM) for static priority
- EDF for dynamic priority

Deadline smaller than period:
- Deadline-monotonic (DM) for static priority
- EDF* for dynamic priority

Terminology

Ty j denotes the j-th instance of task i

1/ Sij/ fij release [start/ finishing time

P; phase of task i (release time of its first instance)
D; relative deadline of task i (same for all instances)
T; period with which the task is regularly activated
C; worst case execution time (same for all instances)

Rate Monotonic Scheduling (RM) (4-22)

RM is optimal among all fixed-priority assignments, i.e. no
other fixed-priority algorithm can schedule a task set which
cannot be scheduled with RM

- static priority assignment (offline, as not changed)
- preemptive (by a task with higher priority)
- deadlines equals to the period (C; < D; =T;)

Algorithm: tasks with higher request rate / shorter period
will have higher priorities and interrupt lower ones

Critical instant: task is release simultaneously with all
higher priority tasks / release creates largest response time

Schedulability analysis

Sufficient but not necessary (U : processor utilization factor):
n
C; 1
U=Z— < n(2V"-1)
i T;
i=

Sufficient and necessary: same as for DM

Deadline Monotonic Scheduling (DM) (4-34)
Deadlines may be smaller than the period:
Ci<D;<T,;

Algorithm: tasks with smaller relative deadlines will have
higher priorities and interrupt tasks with lower priority

Schedulability analysis

Sufficient but not necessary:
= C
Z—‘ < n(2¥/"-1)
i D;
i=

Sufficient and necessary:

- worst-case demand when all tasks are released
simultaneously (critical instances)

- worst case interference I; for task i :

i-1
I Z [! l c
i= | Y
j=1 U
where tasks with j < i have higher priority

- Longest response time R; = C; + I; (at critical instance)

- For schedulability test: find smallest R; which satisfies
i-1
R; .
RL:C[+ZF C] - RlS Di Vi
j=it

Earliest Deadline First (EDF) Scheduling (4-41)

Active task with earliest deadline has highest priority

- dynamic priority assignment
- preemptive
-D; <T;

Schedulability test ONLY for D; = T;
Necessary & sufficient: schedulable with EDF if and only if

n

ZCi— U<1
LT, T
=1

U: average processor utilisation

Problem of Mixed Tasks Sets (4-47)

Periodic tasks: time-driven, execute regular critical control
activities with hard timing constrains

Aperiodic tasks: event-driven; hard, soft or no real-time

Sporadic tasks: aperiodic task characterized by a minimum
interarrival time (enables offline guarantee on constrains)

Background scheduling (4-48)

RM & EDF scheduling of periodic tasks: processing of
aperiodic tasks in the background / when no periodic one

R
—)‘ Periodic Tasks ‘—\M
High-Priority Queue @

FCFS

— Aperiodic Tasks

Low-Priority Queue

RM Polling Server (PS) (4-50)

Idea: Introduce artificial periodic task which services
aperiodic requests as soon as possible

Function of polling server (PS): instantiated at regular
intervals Ts and serves any pending aperiodic requests
If none, the process is suspended (time not preserved!)

Disadvantage: if an aperiodic request arrives just after the
server is suspended, it must wait for next polling period

Schedulability analysis: just like RM, suff. but not necessary
G C
=4 Z—‘ < (n+1) (2™ —1q)
Ts 4 4 T;
i=

Sufficient if aperiodic task finishes before a new arrives

(1+]2])% = o,

EDF — Total Bandwidth Server (4-55)

When k-th aperiodic request arrives at time t = 1y, it
receives a deadline

di = max(7y, di_1) + -
Us

Us =1 — U, : server utilization factor / bandwidth

Once a deadline is assigned, the request is inserted into
the ready queue as any other periodic instance

Schedulability test: necessary & sufficient

U, +Us < 1

5. Resource Sharing

Common resources: data structures, variables, main
memory area, file, set of registers, 1/0 unit

Critical section: piece of code, in which access to shared
resources requires mutual exclusion

blocked: task waits for an exclusive resource to be freed
holds: task is in possession of said resource

free: exclusive resource after leaving critical section
dispatching

termination

—

activation

signal wait

Semaphores (5-5)

S; protects each exclusive resource R;

wait(S;) : start of critical section, requests entrance
signal(S;) : end of critical section, frees resource

Priority Inversion (5-7)

- low-priority task holds resource which prevents high-
priority task from running

- meanwhile, a medium-priority task can preempt the low-
priority task and execute with the high-priority blocked

“Solution”: disallow preemption in critical sections
- unnecessary blocking of unrelated tasks with higher prio

Priority Inheritance Protocol (PIP) (5-10)

assume priority of highest blocked task in critical section

P; : nominal priority
pi =P active priority

Direct Blocking: lower-priority task blocks higher task
Push-through Blocking: medium-priority task is blocked by
low-priority task which has inherited a higher priority

6. Real-Time OS

Deficits of Desktop OS
- monolithic kernel too feature rich, takes too much space

- not: modular, fault-tolerant, configurable, modifiable
- not power optimized
- timing uncertainty too large

Advantages of Embedded OS
- 0S can be fitted to each individual need: remove unused

functions, conditions compilation depending on hardware,
replace dynamic data by static data, advanced compiling

- improved predictability (everything through scheduler)

- interrupts can be employed by all processes

- software tested and considered reliable (no protection)

Real-Time OS (6-10)

Requirements

- predictability of time-behaviour
- upper bound on the execution time of tasks
- almost all activities controlled by scheduler

- management of timing and scheduling
- inclusion of deadlines
- OS must provide precise time services

- speed

Main functionality of RTOS-Kernels (6-13)

Process management (6-13)

- execution of quasi-parallel tasks
- maintain process states & process queues
- preemptive scheduling (fast context switch)
- quick interrupt handling

- CPU scheduling: guarantee deadlines & fairness
- Process synchronization (semaphores, mutual exclusion)
- Inter-process communication (buffering)

- real-time clock for internal time reference

Process States (6-15)

terminate

end_cycle

TIMER
resume
run: starts executing on the processor
ready: ready to execute but not assigned yet
wait: task is waiting for a semaphore for access
idle: completed execution & waiting for next period

Threads (6-17)
A basic unit of CPU utilization, similar to a process
- typically shared: memory

- typically owned: registers, stack

Process: difficult to communicate, think they are alone
Thread: communicate via memory, knows there are others
multiple threads for each distinct activity of process

- faster to switch between threads (no major OS operation)
- Thread Control Block (TCB) stores information

Communication Mechanisms (6-20)

Problem: the use of shared memory for message passing

may cause priority inversion and blocking

Synchronous communication (“rendez-vous”)

- when communicating, they have to wait for each other
- causes problems for maximum blocking time

- in static RT environments solved offline by transforming
synchronous interactions into precedence constrains

Asynchronous communication (“mailbox)
- sender deposits message into channel, receiver reads
- done by shared memory buffer, FIFO queue (fixed size)

7. System Components

Performance _
Power Efficiency Flexibility
» FPGA (field-programmable gate arrays) |

| Application-specific integrated circuits (ASICs) |

General-purpose Processors (7-7)

- high performance
- highly optimized circuits and technology
- use of parallelism (pipelining, predictions)
- complex memory hierarchy

- not suited for real-time applications as highly
unpredictable execution times due to intensive resource
sharing and dynamic decisions

- good average performance for large application mix
- high power consumption

- Multicore Processors
- higher execution performance through parallelism
- useful in high-performance embedded systems
- interference on shared resources (buses, cache etc.)

System Specialization (7-13)

Specialization is main difference between embedded

systems and general purpose high-volume microprocessors

- Specialization should respect flexibility
- systems should cover a class of applications
- required for later changes & debugging

- System analysis required for identification of application
properties which benefit from specialization

Application-Specific Instruction Sets (7-22)

Microcontrollers / Control Dominated Systems

- Reactive systems with event driven behavior
- system description: Finite State Machines or Petri Nets

Microcontrollers connect interfaces (no computation)
- support process scheduling and synchronization
- preemption (interrupt), context switch
- short latency times

- low power consumption
- peripheral units often integrated (timer, buses, AD/DA-C)
- suited for real-time applications

Digital Signal Processors (DSPs) /
Data Dominated Systems (7-26)

- Streaming-oriented systems with periodic behaviour
- input description: flow graphs

DSPs are for computation (signal processing, controlling)

- optimized for data-flow, only simple control-flow

- parallel hardware units (VLIW), specialized instruction set
- high data throughput, zero-overhead loops

- suited for real-time applications

Very Long Instruction Word (VLIW): detection of possible
parallelism by compiler, combine multiple functional units

Field Programmable Gate Array (FPGA) (7-34)

- “program hardware by software”

- granularity of logic units: gate, tables, memory, blocks
- communication network: crossbar, hierarchical mesh
- reconfiguration: dynamically adjustable at runtime

Application-Specific Circuits (ASICs) (7-41)

- custom-designed circuits for mass production
- long design times, lack of flexibility, high design costs

System-on-Chip (SoC) (7-43)

8. Communication

Requirements

- performance (bandwidth & latency, real-time)
- efficiency (cost, low power)

- robustness (fault tolerance, maintainability, safety)

Time Multiplex Communication (8-5)

Random Access (8-6)

No access control, requires low medium utilization
Improved variant: slotted random access

TDMA (Time Division Multiple Access) (8-7)

Communication in statically allocated time slots
- synchronization among all nodes necessary
- master node sends out a synchronization frame

Teycle
Master | Time Tick = Time Tir
Node #1 Message
T2
Node #2 essage |———
Start
Timers

CSMA/CD (Carrier Sense MA / Collision Detection) (8-8)
Try to avoid and detect collisions

- before transmitting, check whether channel is idle

- if collision detected, back off / wait

- repeated collisions result in increasing backoff times

Token Protocol (Token Ring) (8-9)

Token value determines which node is transmitting
- only the token holder may transmit

#2 Messag

Node #1

Node #2

Node #3 [#1]

Token passes to next node according to # field.

CSMA/ Collision Avoidance - Flexible TDMA
(FTDMA) (8-11)

Reserve s slots for n nodes ; if slot is used, it becomes slice
- node start transmitting message only during assigned slot
-s =n:no collision ; s < n : statistical collision avoidance

- e

Each message

proa i
Node #1? Message | #1 T Broadcasts its
i node number
Node #2; =t
Node #3} i~ Message [#3 |+ Message —

SLICE #3

CSMA/ Collision Resolution (CSMA/CR) (8-12)

Each node is assigned a unique identification number

- all nodes wishing to transmit send a binary signal based
on their identification number; if node detects a dominant
state while transmitting a passive one, it drops out

- node with the lowest identification value wins

Flex Ray (8-14)

Operation principle: Cycle is subdivided into static and
dynamic segment. Static segment bases on fixed allocation
of time slots, dynamic segment for ad-hoc communication

Static Segment: TDMA All static slots are the same length
and are repeated every communication cycle

Dynamic Segment: Flexible TDMA minislot is opportunity
to send a message; if not sent, minislot elapses unused

Bluetooth (Frequency Multiplex Communication) (8-20)

Design goals
- small size, low cost, low energy

- secure & robust transmission (interference with WLAN)

Technical Data

- 2.4 GHz (spectral bandwidth 79 MHz)

- 10-100m transmission range, 1 Mbit/s bandwidth

- simultaneous transmission of multimedia & data

- ad hoc network (de-centralized, dynamic connections)

Frequency Hopping

- transmitter jumps between frequencies: 1600 hops/s
- 79 channels, ordering by pseudo-random sequence

- Frequency range: (2402 + k)MHz, k=10..78

- Data transmission in time window of 625 us

- Each packet transmitted on a different frequency

Network Topologies (8-24)

Ad-hoc networks

- all nodes are potentially mobile

- dynamic emergence of connections

- hierarchical structure (scatternet) of small nets (piconet)

Piconet
- contains 1 master and maximally 7 slaves
- all nodes inside use the same frequency hopping scheme
(determined by device address of master BD_ADDR)
- connections exist : - one-to-one
- master and all slaves (broadcast)

Scatternet
- formed by several piconets with overlapping nodes
- node can be master in at most one and slave in other nets

Addressing (8-30)

Packet format

- Access Code / BD_ADDR : 82bits, identifies packets
- Header / AM_ADDR : 54bits, identifies connection
- Payload : 0 — 2745 bits

Bluetooth Device Address BD_ADDR : 48 Bits, unique

Active Member Address AM_ADDR :
- 3 bits for maximally 7 active slaves in piconet
- Address “Null” is broadcast to all slaves

Parked Member Address PM_ADDR : 8 bits
- in low power state: waiting for communication

Connection Types (8-31)

Synchronous Connection-Oriented (SCO)
- point-to-point full duplex between master & slaves
- master reserves slots for transmission regularly

Asynchronous Connection-Less (ACL)
- asynchronous service, no slot reservation
- master transmits spontaneous, slaves answer next

Frequency Hopping / Time Multiplexing (8-32)
- packet of the master is followed by a slave packet

- after each packet, channel / frequency is switched
f(2k) f(2k+1) f(2k+2)

master . o ;

slave i | ! T]
Ho H I i
: : . ! I
H
]
-

625 pis

- master can only start sending in even slot numbers
- packets have length of 1, 3 or 5 slots (same frequency)

Modes and States (8-35)

Modes of operation

Inquiry: master identifies addresses of neighbors
Page: master attempts connection with slave

Connected: connection is established

States in connection mode

- active active in connection to master
- hold does not process data packets
- sniff awakens at regular intervals

checks whether there are packets

- park passive, only synchronized

Synchronization in Connection Mode: channel sequence &
phase of a piconet is determined (by BD_ADDR) of master

Synchronization in Page Mode: 3-way-handshake to
synchronize between master and slave; prerequisite for
establishing a connection

1. Page: master transmits own & slave address
2. Page scan: slave listens

3. Master page response: slave answers with own address
4. Slave page response: master sends FHS-packet,

which includes channel sequence & phase of piconet

From Standby to Connection (8-40)

Master Slave
O~ 1

Y D
(Inquiry (i FHS i)
| Response/ \ \Reaponse Réspuuse

‘onnectiol gulc'io
(Master)) > _(Slave)

—
Co®

Baseband specification: defines packet formats,

Protocol Hierarchy (8-44)

physical & logical channels, error correction,
synchronization and modes of operations

Audio specification: defines coding & decoding

Link manager (LM): authentication & encryption,
management, connection initiation, transitions

Host controller interface (HCI): interface host - node

Link layer control & adaption layer (L2CAP):
interface for data communication

RFCOMM: simple transport protool for serial
connection

9. Low Power Design

Power is most important constrain in Embedded Systems

Power and Energy (9-9)

E= fP(t) dt

Minimizing power consumption is important for
- design of the power supply & voltage regulators
- the dimensioning of interconnect

- cooling (decrease temporary heating)

Minimizing energy consumption is important due to
- restricted availability of energy (mobile systems)

- limited battery capacities & long lifetimes needed

- very high costs of energy (solar panels, in space)

Power Consumption of CMOS Processor (9-12)

Dynamic power consumption: charging & discharging C;,
Short circuit power consumption: switching causes shorts
Leakage: leaking diodes & translators, causes static current

Power P~aC, Vi f

Energy E~aC,V: ft=aC,VE (#cycles)
Delay T~C, %:—%

Vaa: supply voltage

Vr K Vyq threshold voltage

a: switching activity (=1 : switch every cycle)
Cp: load capacity

f ~% ~%: clock frequency

Basic Techniques (9-17)

Power Supply Gating: minimize static power consumption
(leakage) by cutting off power supply while unit inactive

Parallelism (9-18)

Parallelism Pipelining
ittt
V2 |
[a2
ittt |
_—)\ ‘ Ba
By | Vad2 Vg2 | Vo2
2 e frad2 | | a2

| | | |
| | \ |

E ~ V2, (#cycles)

VLIW Architectures (9-22)

Large degree of parallelism & many computational units:

- explicit parallelism (parallel instruction set) by compiler
- parallelization through hardware (difficult & expensive)

Translation of instruction set

- done with optimized compiler (no compatibility)
- on processor with decoder (translation in HW)
- on processor with dynamic compiler in SW (Transmeta)

Dynamic Voltage Scaling (DVS) (9-26)

Adapt voltage & frequency to situation to save energy

Optimal Strategy: running at a constant frequency/voltage
minimizes energy consumption for dynamic voltage scaling

- if a task finishes on deadline, the chosen frequency
(voltage) is optimal in terms of energy efficiency

- if only discrete voltage levels, choose directly above and
below the ideal voltage to minimize energy consumption

YDS Algorithm for Offline Scheduling (9-36)

Schedule without missing deadlines & minimal energy

O(N?), N:number of tasks inV

Intensity G in time interval [z, z']: average accumulated
execution time of all tasks inside the interval

V'(lz,z'])={v,eV:z<a <d; <2z}

622D =) «/@ =2

ViEV’

1. Find critical interval (i.e. interval with highest intensity)
and schedule tasks inside with EDF

f =G * fromina

2. Adjust arrival times and deadlines by excluding interval
3. Run algorithm for revised input and put pieces together

Online algorithm: run algorithm with known tasks, if new
ones arrive, update schedule; maximally uses 27 times the
minimal energy consumption of optimal offline solution

Dynamic Power Management (DPM) (9-46)

DPM tries to assign optimal power saving states
RUN: operational

IDLE: ~ SW routine may stop the CPU when not in use,
while monitoring interrupts

SLEEP: shutdown of on-chip activity

DVS Critical frequency (voltage): running at any frequency
(voltage) below is not worthwhile for execution

Procrastination Schedule: execute only voltages higher or
equal to the critical voltage (round up lower ones)
- procrastinate task execution & sleep as long as possible

10. Architecture Models

Dependence graph (DG) (10-4)
directed graph G = (V,E), ECSVxV

(v, v,) EE: -v; (immediate) predecessor of v,

- v, (immediate) successor of v;

- nodes represent tasks, edges represent relations
- describes order relations for execution of single tasks

- represents parallelism, not branches in control flow
given basic block: dependence graph
X=a+b; a b

[d
y=.o _/

z=x"y;
y=b+d;

X

single assignment
form:
X=a+bhb;

y=c-d;
z=x*y; z y1
yl=b+d;

Control-Data Flow Graph (CDFG) (10-8)

Description of control structures & data dependencies
- combines control flow & dependence representation

Control Flow Graph: finite state machine which represents
the sequential control flow of the program (i.e. branches)
- operations within state are written as dependence graph

Dependence Graph/ Data Flow Graph (DFG):

- NOP operations represent start and end point (polar)
CDFG: CFG + DFGs

Sequence Graph (SG) (10-11)

Hierarchy of acyclic & polar directed graphs

- graph element is a dependence graph of type:
- a) operations or tasks
- b) hierarchy nodes

- CALL (module call)

-BR (branch)

-LOOP (iteration)

Marked Graphs (MG) (10-18)

- mainly used for modeling regular computation (signal flow)

Marked graph G = (V, A, del) consists of

- nodes (actors) veV
- edges a=(vi,v]-)EA,A cVxV
- initial tokens del:A—> N

O O

v

- token correspond to data stored in FIFO queues

- node is activated if on every input edge there is a token
- constant # tokens: # inputs = # outputs on each node

Implementation in hardware

- synchronous digital circuit
- nodes / actors are combinatorial circuits
- edges correspond to synchronous shift registers

- self-timed asynchronous circuit
- actors & FIFO registers are independent units
- coordination & synchronization of firing
implemented with handshake protocol

- software implementation with static / dynamic scheduling

11. Architecture Synthesis

Determine a hardware architecture that efficiently
executes a given algorithm

- allocation (determine necessary hardware)
- scheduling (determine timing of operations)
- binding (determine relations between parts)

Models (11-5)

Sequence Graph G; = (Vs, Es) : Vs denotes operations of
the algorithm, Eg the dependence relations

Resource Graph Gy = (Vg Eg), Vg = Vs UV,

Vy : resource types of architecture, G bipartite graph
Cost function c:V; -7
Execution times w : Ep » Z

a:Vp—>27Z
denotes number of available instances for each resource

Allocation

Bw)=ve , y(ws) =7
operation v isimplemented on r-th instance of resource v,

Binding

Scheduling T:Vs—>Z determines starting times
feasible if (v) —t(w) =w) Vv (v,v;) € Eg
Latency t(vy) — 1(vy)

Multiobjective Optimization (11-13)
Mostly optimize for more than one objective:

- latency of implemented algorithm

- hardware cost (memory, communication, ALUs)
- power & energy consumption

Pareto Optimum
- Improving a given configuration without downgrading

any other aspect is called a pareto improvement

- if no further improvements can be made, the
configuration is called pareto optimal (nothing better in all
aspects — dominates weaker configurations)

Classification of Scheduling Algorithms (11-19)

- unlimited resources <> limited resources
- iterative algorithm: initial solution improved step-by-step
- constructive algorithm: problem solved in one step

- transformative algorithm: initial problem formulation is
transformed into a (classical) optimization problem

Scheduling without resource constrains (11-20)

Every operation gets its own resource; often used as a first
step to determined upper bounds on feasible schedules

As Soon As Possible (ASAP) (11-22)
Start at top, schedule task after all predecessors finished

top to bottom

7(v;) = max{ r(vj) + w(vj)} ,(vj,vi) € Es
As Late As Possible (ALAP) (11-25) bottom to top
Start at bottom, schedule task before earliest successor

t(v;) = min{ ‘r(v]-) \4 (vi,v]-) € ES} —w(v;)
Scheduling with Timing Constrains (11-28)

Constrains: - deadline : latest finishing time

- release time : earliest starting time
- relative constrains : differences

Weighted Constrain Graph: G, = (V, E;, d)
Contains a weighted edge for each timing constrain

An edge (vi, v]-) € E . with weight d(vi, v]-) denotes:
t(v;) —t(v) = d(v,v))
Bellman-Ford-Algorithm: complexity O(|V| |E¢|)

Iteratively set for all v; € V. :
T(Uj) = max{ T(vj),’[(vi) + d(vi,vj) : (vi,vj) € EC}

Starting from t(v;) = —oo,v; € Vo \ {vy}, t(vy) =1

10

Scheduling with resource constrains (11-34)

Minimal latency is defined as

L = min{r(vy) :
(1(v;) — 7(vi) > w(vi, B(wi)) V(vi,v;) € Es) A
(Hos @ Bvs) = v A 7(vs) <t < 7(ws) +w(vs, v1) }| < avr)
Yoy € VT,Vl S t S Lmax)}

List Scheduling (11-36)

- static priority, which denotes urgency of being scheduled
(e.g. higher priority, the further still away from end)

- algorithm schedules one time after the other and chooses
from the tasks with top-priority

- heuristic algorithm, doesn’t guarantee optimal scheduling

LIST(Gg(Vs, Es),Gr(Vg, ERr),a,3 priorities){
t=1;
REPEAT {
FORALL v € Vr {
determine candidates to be scheduled Uy;
determine running operations Tj;
choose S C Uy with maximal priority
and [Sg| + [Tk| < ovg);
T(vi) =t Yv; € gy}
t=t+1;
} UNTIL (v, planned)
RETURN (7); }

Integer Linear Programming (11-42)

- yields optimal solution, as based on exact description
- binding already determined (know duration)
- know earliest & latest starting times from ASAP / ALAP

1. Minimize:
T(vn) —7(v0) = L

2. Decision variables = binary:

rip € {0,1}, Yo, € Vg, Ve [, <t < Iy

3. Exactly one variable z;; for all has the value 1:

h;
S au=1 VueVs
=i,

Each task can only have one starting point.
4. If z;; = 1 then the operation v; starts at time ¢, i.e. 7(v;) =t.

h

Z t* T4 = 7(v:), Yv; € Vg
t=1;

ot

5. Precedence constraints are satisfied:

6. Resource constraints are not violated:

min {w(v;)—1t—1;}

Z Z Tty < a(vg)

Vir(viop)€ER pl=max {0,t—hy}

Yo € Vp, Vt 11 <t < max{h;:v; € Vs}

Iterative Algorithms (11-49)

Consist of a set of indexed equations that are evaluated for
all values of an index variable (e.g. signal flow graphs,
marked graphs)

Representation of iterative algorithms

- one indexed equation with constant index dependencies
- equivalent set of indexed equations

- extended sequence graph denoting the displacements
- marked graph denoting displacement as data in queue

- signal flow graph (with displacement z™1)

- loop program

Definitions

Iteration: set of all operations necessary for computation
Iteration interval P: time distance between two iterations
Throughput 1/P: iterations per time unit

Latency L: maximal time distance between starting and

finishing times of operations belonging to one iteration

Implementation Principles

- Simple possibility: edges with d;; > 0 are removed and
the resulting simple sequence graph solved traditionally

- functional pipelining: Simultaneous execution of data
sets belonging to different iterations. Successive iterations
overlap and a higher throughput is obtained

Solving the synthesis problem using Integer Linear
Programming: (11-56)

- use extended sequence graph

- calculate upper and lower bounds as well as P

- replace equations (5) and (6) for ILPs

Dynamic Voltage Scaling (DVS) (11-60)

We can optimize the energy in case of DVS

- there are |K| different voltage levels

- task v; € Vs can use one of the execution times w, (v;)
and corresponding energy e, (v;)

—_

. Minimize:

T Y wrente)

keK vi€Vs

Sums up all individual energies of operations.

o

. Decision variables y;. binary:
v € {01}, Yo € Vs, bk € K

w

. Exactly one implementation (voltage) & € K is chosen for each operation v;:

Zm =1,V eVs

keK
4. Precedence constraints, where the actual execution time is selected from the set of all available

ones:
7(v;) — T(v;) > Z Yik * wi(v;), Y(vi.v;) € Eg
keK
5. Guarantees deadlines:
() + 3 i x wi(vi) < d(v), Yoi € Vs
hek

11

12. Various

Petri Nets (2-47)

- bipartite graph consisting of places and transitions

- data and control represented by moving tokens

Firing: enabled if at least one token in every input place
Remove one from each input and put one to each output

NutOS & Programming Practice (2-50)

Creating a thread

a thread looks like a

THREAD (my_thread, arg) {/function that never returns
for (53) { p

// do something

}
} the thread is put into life

int main(void) { /
if (0 == NutThreadCreate("My Thread", my_thread, 0, 192)) {
// Creating the thread failed

}
for (;;) {
// do something stack size

}
¥
sleep queue

@ thick lines: threads
thin lines: control
select

ready queue highest priority

ThreadCreate

@ reserve stack
add thread control block

wait queue

Terminating a thread

THREAD (my_thread, arg) {
for (5;) {
// do something
if (some condition)
NutThreadExit ()

>~ can only kill itself

Yield acces to another thread / set priority

THREAD (my_thread, arg) {
for (550 4
NutThreadSetPriority(20);

ready queue

select
highest priority

// do something 9 Iro
i } EI —(O) ThreadYield

Slee
sleep queue
THREAD (my_thread, arg) {
for (5;) { select
// do something | expiredtime Steep
NutSleep(1000);
} lect run
¥ ready queue hi select
ighest priority

Posting & waiting for events (2-57)

#include <sys/event.h>

HANDLE my_event;

THREAD (thread_A, arg) {
for (53) {

// some code

// some code

}
}
THREAD (thread_B, arg) { pOSt event
for (;) o
// some code
llutEventPost (&my_event) ;
// some code
}
}

NlutEventWait(&my_event, NUT_WAIT_

wait for event, but only limited time

/

INFINITE);

Laboratory

12

