Electronic Circuits Summary

Andreas Biri, D-ITET

16.06.14

Constants (@300K)

$$\varepsilon_0 = 8.854 * 10^{-12} F/m$$
 $m_0 = 9.11 * 10^{-31} kg$ $k = 1.38 * 10^{-23} J/K = 8.617 * 10^{-5} eV/K$ $\frac{kT}{q} = 0.0259 V$, $\frac{q}{kT} = 38.61 \frac{1}{V}$, $kT = 25.9 meV$ $1 eV = 1.602 * 10^{-19} J$ $q = 1.602 * 10^{-19} A s$

1. Transistor Characteristics

Resistor: $V_R = R * I_R$

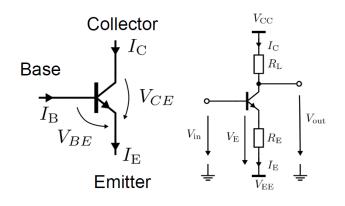
<u>Capacitor:</u> $I_C = C * \frac{d}{dt} V_C$

Inductor: $V_L = L \frac{d}{dt} I_L$

Bipolar Junction Transistor (BJT)

$$I_C = I_S * e^{\frac{V_{BE}}{V_T}} \left(1 + \frac{V_{CE}}{V_A} \right) , \qquad V_T = \frac{kT}{q} \approx 26 \ mV$$

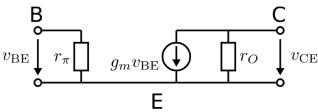
$$I_B = \frac{I_C}{\beta}$$
 , $I_E = (1 + \beta) I_\beta$, V_A : Early voltage



Small Signal Equivalent Circuit BJT

Consider only small oscillations around operation point \rightarrow Linearize as approximation, $V_{CC} = \mathbf{0} = V_{EE}$ as const.

$$\begin{split} i_{C} &= \frac{\beta}{\beta+1} \frac{v_{E}}{R_{E}} = \frac{d \ I_{C}}{d \ V_{BE}} \ (\ v_{in} - v_{E} \) = g_{m} * \Delta V_{BE} \approx \frac{v_{E}}{R_{E}} \\ v_{out} \approx &- \frac{g_{m} \ R_{L}}{1+g_{m} \ R_{E}} \ v_{in} \\ g_{m} &= \frac{d \ I_{C}}{d \ V_{BE}} = \frac{I_{C}}{V_{T}} \ , \qquad g_{\pi} = \frac{d \ I_{B}}{d \ V_{BE}} = \frac{g_{m}}{\beta} \\ g_{0} &= \frac{d \ I_{C}}{d \ V_{CE}} = \frac{I_{C}}{V_{A} + V_{CE}} \approx \frac{I_{C}}{V_{A}} \\ r_{\pi} &= \frac{1}{g_{\pi}} = \frac{\beta}{g_{m}} \ , \qquad r_{0} = \frac{1}{g_{0}} = \frac{V_{A} + V_{CE}}{I_{C}} \approx \frac{V_{A}}{I_{C}} \end{split}$$



Biasing of a BJT (Setting the operationg point)

Voltage divider R_{B1} , R_{B2} sets the bias voltage Transistor in active region : $V_{BE} \approx 0.7 \ V$

MOSFET

$$I_D = \frac{K'}{2} \frac{W}{L} (V_{GS} - V_t)^2 (1 + \lambda V_{DS}), \qquad V_{DS} > V_{GS} - V_t$$

K': Intrinsic transconduct. coeff.

 V_t : Threshold voltage

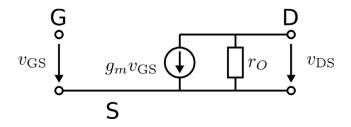
W / L : Gate width / Gate lengt

λ: Characteristic length

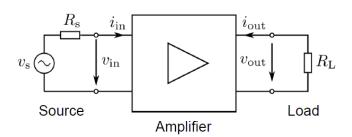
$g_m = rac{d \ I_D}{d \ V_{GS}} pprox \sqrt{rac{2 \ K' \ W}{L}} \ I_D$

Small Signal Equivalent Circuit MOSFET

$$g_0 = \frac{d I_D}{d V_{DS}} = I_D \frac{\lambda}{1 + \lambda V_{DS}} \approx \lambda I_D$$
, $r_0 = \frac{1}{g_0} \approx \frac{1}{\lambda I_D}$



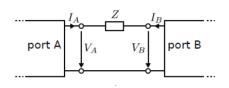
2. Single-Transistor Amplifiers



<u>Impedances:</u> $Z_{in} = \frac{v_{in}}{i_{in}}$, $Z_{out} = \frac{v_{out}}{i_{out}}$ ($v_S = 0$)

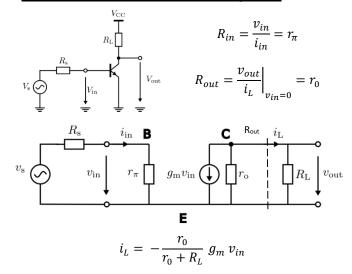
Gains: $A_V = \frac{v_{out}}{v_S}$, $A_I = \frac{i_{out}}{i_S}$ ($R_L = 0$)

Millers theorem



$$Z_{in} = \frac{Z}{1 + |A_V|}, \qquad Z_{out} = \frac{Z}{1 + \frac{1}{|A_V|}}$$

Common-Emitter / Source Amplifier

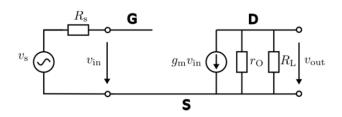


 $A_V = \frac{v_{out}}{v_S} \approx -\frac{r_{\pi}}{r_{\pi} + R_S} g_m R_L$, $\frac{v_{out}}{v_{in}} = \frac{i_L R_L}{v_{in}} \approx -g_m R_L$

Inverting Amplifier → 180° phase shift

$$A_I = \frac{i_{out}}{i_S}\Big|_{v_{out}=0} = \frac{R_S}{R_S + r_\pi} \beta , \qquad \frac{i_{out}}{i_{in}}\Big|_{v_{out}=0} = g_m r_\pi = \beta$$

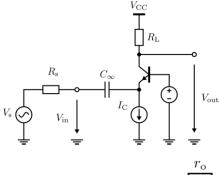
MOSFET: instead of BJT, no current into the gate

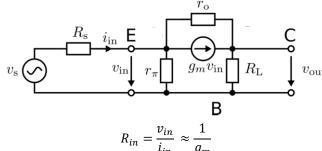


No current flow into the gate: $\,R_{out}
ightarrow \, \infty$, $v_{in} = v_{\it S}$

$$R_{out} = r_0$$
, $A_V \approx -g_m R_L$

Common-Base / Gate Amplifier



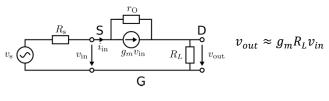


$$\left.R_{out} = \frac{v_{out}}{i_{out}}\right|_{R_S \gg r_{\pi}} \approx \left(\left(r_{\pi}||R_S\right)g_m + 1\right)r_0 \approx \beta \, r_0$$

$$A_V = rac{v_{out}}{v_S} pprox rac{g_m \, R_L}{1 + g_m \, R_S} : non-inverting \ amp.$$

$$A_I = \frac{i_{out}}{i_{in}}\Big|_{v_{out}=0} = -\frac{g_m}{\frac{1}{R_S||r_\pi} + g_m} \approx -1 \quad for \ R_S \gg r_\pi$$

MOSFET: $R_S = 0$: voltage source; $R_S = \infty$: current source

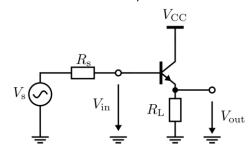


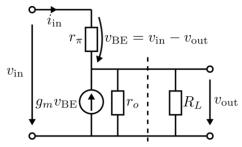
$$A_V = \frac{v_{out}}{v_S} \approx \frac{g_m R_L}{1 + g_m R_S}$$
, $A_I = \frac{i_{out}}{i_S} = -1$

$$R_{in} = \frac{v_{in}}{i_{in}} \approx \frac{1}{g_m}$$
, $R_{out} \approx (1 + g_m R_S) r_0$

Common-Collector / Drain Amplifier

Also known as emitter / source follower



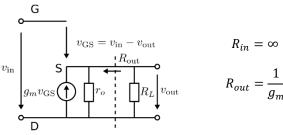


Usually:
$$R_L \ll r_0 \rightarrow R_L || r_0 \approx R_L$$

$$R_{in} = \frac{v_{in}}{i_{in}} = r_{\pi} + (1 + \beta) R_L, \qquad R_{out} = \frac{1}{g_m + \frac{1}{r_{\pi}}} \approx \frac{1}{g_m}$$

$$A_V = \frac{v_{out}}{v_{in}} \approx \frac{1}{1 + \frac{1}{g_m R_L}} \approx 1$$
, $A_I = 1 + \beta$

MOSFET: no current flowing into the gate ($A_I = \infty$)



$$A_V \approx \frac{1}{1 + \frac{1}{g_m R_L}}, \quad i_{out} = g_m v_{out}$$

Comparison of the three basic amplifiers

	CE/CS Amplifier	CC/CD Amplifier (Voltage Buffer)	CB/CG Amplifier (Current Buffer)
Voltage Gain A _V	High	~1	High
Current Gain A _I	High	Moderate	~1
Input Resistance R _{in}	High	High	Low
Output Resistance R _{out}	High	Low	High

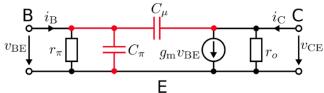
<u>After voltage buffer:</u> *lower* output resistance (better V-source) After current buffer: *larger* output resistance (better C-source)

Impedance Matching

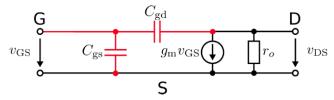
 P_L is maximized when $R_L = R_S$

3. Frequency Response of Amplifiers

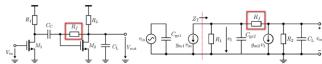
Change of charge vs. voltage across pn-junctions between BJTs can be represented by a parasitic capacitance



 $C_{\pi}: capacitance\ between\ B\ and\ E\ , \qquad riangleq C_{gs}$ $C_{\mu}: capacitance\ between\ B\ and\ C\ , \qquad riangleq C_{gd}$

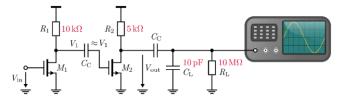


Bandwidth-Broadening



Additional **shunt/feedback resistor** R_f up to doubles bandwidth!

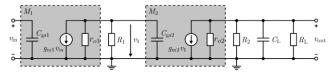
Multi-Stage Amplifier



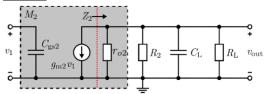
Small signal model: all constant voltage supplies become ground

 $C_C: large, \approx shorts$, $C_{gd}: often negligible$

Stage 1:



Stage 2:

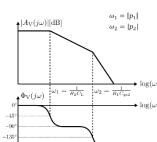


$$v_{out} = -g_{m2} v_1 Z_2 \approx \frac{-g_{m2} R_2}{1 + sC_L R_2} v_1, \qquad Z_2 \approx \frac{R_2}{1 + sC_L R_2}$$

$$A_{V2}(s) = \frac{v_{out}(s)}{v_1(s)} = -\frac{g_{m2} R_2}{1 + s C_L R_2}$$

Cut-off frequencies: defined by poles

$$A_V(s) = \frac{v_{out}(s)}{v_{in}(s)} = \frac{g_{m1}R_1 * g_{m2}R_2}{\left(1 + s R_1 C_{gs2}\right)(1 + s R_2 C_L)}$$



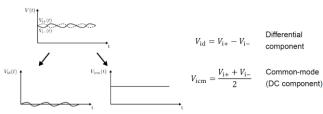
 $\omega_1 = |p_1| = \frac{1}{R_2 C_L} \omega_2 = |p_2| = \frac{1}{R_1 C_{gs2}}$

<u>Time Domain representation:</u>

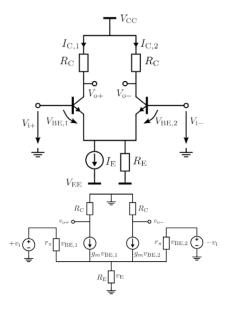
 $v_{out}(t) = A * e^{p_1 t} + B * e^{p_2 t} + C$

4. Differential Amplifiers

Transmitting information with two complementary signals Information is contained in the difference, same DC value



<u>Differential amplifier:</u> In order to filter out DC component before the amplification, we use a fixed *tail current* I_E , which also enables *DC coupling of stages* (current splitted)



 V_E (emitter-node potential) remains constant $\rightarrow v_E = 0$ Symmetry between left and right branch \rightarrow split circuit into two independent parts and analyze separately (once)

Differential amplification: $A_{vd} = \frac{v_{od}}{v_{id}} = -g_m \, R_C$

Common-mode amplification: $A_{vcm} = \frac{v_0}{v_i} = \frac{v_{ocm}}{v_{icm}} = -\frac{R_C}{2R_E}$

Common Mode Rejection Ratio

Indicates how strong a common mode signal is attenuated compared to a differential signal

$$G = \frac{A_{vd}}{A_{vcm}} = \frac{-g_m R_C}{-R_C/2R_E} = 2 g_m R_E$$

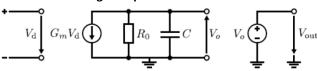
$$CMRR = G_{dB} = 20 * \log_{10} G$$

$$GBP = A_0 * \omega_C$$

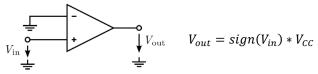
Operational amplifiers

Ideal: $Z_{in} \rightarrow \infty$, $Z_{out} \rightarrow 0$, $A_{vd} \rightarrow \infty$, $\mathit{CMMR} \rightarrow \infty$

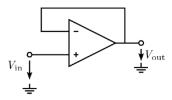
Non-ideal Small Signal Equivalent



Voltage Comparator

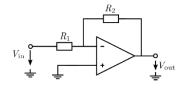


Voltage follower (Buffer)



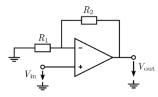
 $V_{\rm out} = V_{\rm in}$

Inverting amplifier



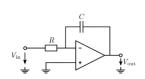
$$V_{\rm out} = -\frac{R_2}{R_1} V_{\rm in}$$

Non-inverting amplifier



$$V_{\rm out} = \left(1 + \frac{R_2}{R_1}\right) V_{\rm in}$$

Integrator

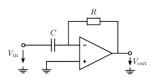


$$V_{\text{out}}(s) = -\frac{V_{\text{in}}(s)}{sRC}$$

$$V_{\text{out}}(t) = V_{\text{out}}(0) - \frac{1}{RC} \int_{0}^{t} V_{\text{in}}(t) d\tau$$

$$V_{\text{in}}(t) \longrightarrow_{t} V_{\text{out}}(t)$$

Differentiator



$$V_{\text{out}}(s) = -V_{\text{in}}(s)RCs$$

$$V_{\text{out}}(t) = -RC\frac{d}{dt}V_{\text{in}}(t)$$

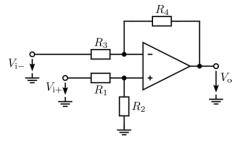
$$V_{\text{in}}(t) \longrightarrow t$$

5. Instrumentation Amplifier

Precise amplification of weak, distorted sensor signals High input impedance, internal feedback loop

Basic Instrumentation Amplifier

Amplifies voltage difference with a precise gain
Differential gain must be equal for both input branches



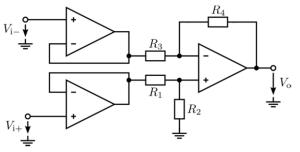
$$V_0 = \frac{R_2}{R_1} \frac{1 + R_4/R_3}{1 + R_2/R_1} V_{i+} - \frac{R_4}{R_3} V_{i-}$$

Set $R_1=R_3$, $R_2=R_4$ to equally load both input branches:

$$V_0 = G * V_{i+} - G * V_{i-}, \qquad G = \frac{R_2}{R_1} = \frac{R_4}{R_3}$$

Buffered Instrumental Amplifier

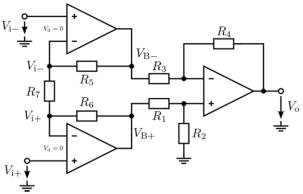
Obtain ideally high input impedance by input buffering



$$V_0 = V_{icm} \left(\frac{R_2(R_3 + R_4)}{R_3(R_1 + R_2)} - \frac{R_4}{R_3} \right) + \frac{V_{id}}{2} \left(\frac{R_2(R_3 + R_4)}{R_3(R_1 + R_2)} + \frac{R_4}{R_3} \right)$$

$$CMMR = \frac{A_d}{A_{cm}} = \frac{V_0/V_{id}}{V_0/V_{icm}} = \frac{(R_3 + R_4)R_2 + (R_1 + R_2)R_4}{2*(R_2R_3 - R_4R_1)}$$

Input stage gain



Differential & common mode gain of input stage:

$$A_B = \frac{V_{Bd}}{V_{id}} = \frac{V_{B+} - V_{B-}}{V_{i+} - V_{i-}} = 1 + \frac{R_5 + R_6}{R_7}$$

$$A_{cm,B} = \frac{V_{B+} + V_{B-}}{V_{i+} + V_{i-}} = 1 \rightarrow no \ current \ through \ R_5, R_6, R_7$$

Differential & common mode gain in total:

$$A'_{d} = \frac{V_{0}}{V_{id}} = \frac{A_{B}}{2} \left(\frac{R_{2}(R_{3} + R_{4})}{R_{3}(R_{1} + R_{2})} + \frac{R_{4}}{R_{3}} \right)$$

$$R_1 = R_3, R_2 = R_4 \rightarrow A'_d = \frac{R_2}{R_1} A_B$$

$$A_{cm} = A_{cm,B} \left(\frac{R_2(R_3 + R_4)}{R_3(R_1 + R_2)} - \frac{R_4}{R_3} \right)$$

$$CMMR = \frac{A'_d}{A_{cm}} = A_B \frac{A_d}{A_{cm}} \rightarrow increased by factor A_B$$

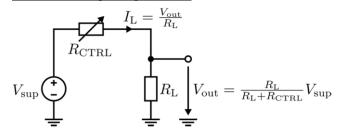
<u>Voltage offset:</u> Offset voltage in combination with a small input signal is highly undesired. The output signal then reaches the saturation level even for small values of V_i and is therefore distorted.

If this is not appropriate, **chopper amplifiers** can be used.

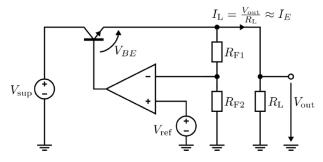
6. Voltage Regulators, Logarithmic

& Anti-Logarithmic Amplifiers

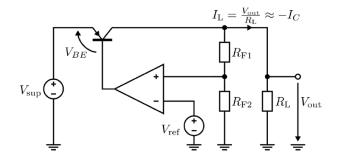
Linear voltage regulators



Non-inverting topology



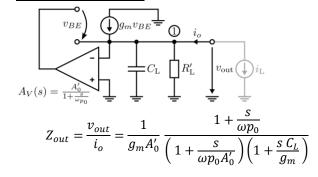
Inverting topology



$$V_{out} = \left(1 + \frac{R_{F1}}{R_{F2}}\right) V_{ref}$$

Choose R_{F1} , $R_{F2} \gg R_L \rightarrow I_L \approx I_E / -I_C$

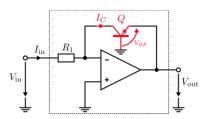
Small Signal Equivalent:



Logarithmic & Anti-Logarithmic Amplifiers

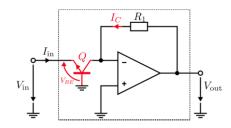
Non-linear circuit whose output voltage is proportional to the logarithm / exponential of the input voltage

<u>Logarithmic Amplifier:</u> Rely on logarithmic relationship of $I_C \& V_{BE}$



$$I_{in} = \frac{V_{in}}{R_1} = I_C = I_S e^{-\frac{V_{out}}{V_T}}$$
, $V_{out} = -V_T \ln\left(\frac{I_{in}}{I_S}\right) = -V_T \ln\left(\frac{V_{in}}{R_1 I_S}\right)$

Anti-Logarithmic Amplifier

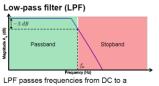


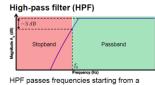
$$V_{BE} = -V_{in}$$
 , $I_C = I_S e^{-\frac{V_{in}}{V_T}} \rightarrow V_{out} = I_C R_1 = I_S R_1 e^{-\frac{V_{in}}{V_T}}$

7. Active RC Filters

Filter is a frequency-selective circuit that passes a specified band of frequencies and blocks frequencies outside of it.

Passive Filters: based on passive elements such as R / L / C Active Filters: based on op-amps in addition to R / L / C



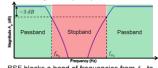


Band-pass filter (BPF)

BPF passes a band of frequencies from f_{o_1} to f_{o_2} and stops all other frequencies.

Band-stop filter (BSF)

desired frequency f_0 .



BSF blocks a band of frequencies from f_0 to f_{o_2} and passes all the other frequencies

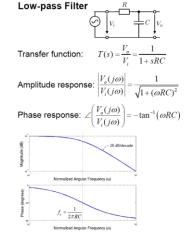
Cutoff frequency

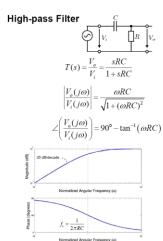
Poles define cut-off:

$$|T(j\omega_c)| = \frac{1}{\sqrt{2}} \max(|T(j\omega)|)$$

$$\omega_n = |p_n|$$
, $BW_{-3dB} = {\omega_0 \choose O_0}$

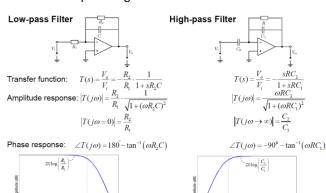
First order passive filters





First order active filters

Filters and amplifies signal

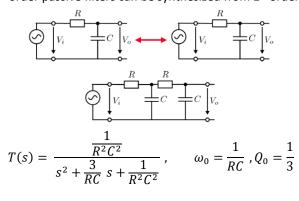


Comparison of first order filters

Passive Filters	Active Filters	
2 passive elements that determine pole	3 passive elements, pole determined by elements in op-amp feedback	
Fixed gain of 1 in pass band	Variable pass band gain possible	
No power consumption	Op-amp consumes power	
Real filter transfer function close to ideal filter function	Real filter transfer function dependent on op-amp DC-gain and gain- bandwidth product	

Second order passive filters

2nd order passive filters can be synthesized from 1st order



Denominator: $D(s) = s^2 + \frac{\omega_0}{\alpha_0} s + \omega_0^2$

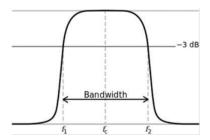
 $p_{1,2} = -\frac{\omega_0}{2 Q_0} \pm \omega_0 \sqrt{\frac{1}{4 Q_0} - 1}$ Poles:

Resonance frequency:

$$\omega_0 = 1/\sqrt{L C}$$

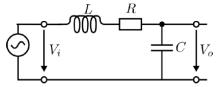
Quality factor:

$$Q_0 = \frac{1}{R} \sqrt{L/C}$$



Energy vs. freq. The higher Q, the narrower and sharper the peak.

Low-pass filter

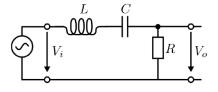


$$T(s) = \frac{\frac{1}{LC}}{s^2 + \frac{R}{L}s + \frac{1}{LC}} = \frac{\omega_0^2}{s^2 + \frac{\omega_0}{Q_0}s + \omega_0^2}$$

High-pass filter

$$T(s) = \frac{s^2 * \omega_0^2}{s^2 + \frac{\omega_0}{Q_0} s + \omega_0^2}$$

Band-pass filter

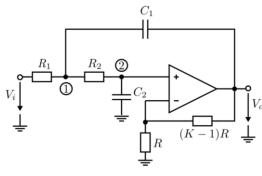


$$T(s) = \frac{s\frac{R}{L}}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$$

Sallen-Key amplifier

Allow sharp gains without using inductors (expensive)

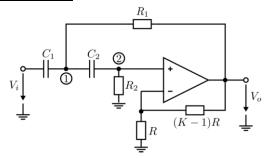
Low-pass filter



$$T(s) = \frac{\frac{K}{R_1 R_2 C_1 C_2}}{s^2 + \left(\frac{1}{R_1 C_1} + \frac{1}{R_2 C_1} + \frac{1 - K}{R_2 C_2}\right) s + \frac{1}{R_1 R_2 C_1 C_2}}$$

$$\omega_0 = \frac{1}{\sqrt{R_1 R_2 C_1 C_2}} \qquad Q_0 = \frac{\omega_0}{\left(\frac{1}{R_1 C_1} + \frac{1}{R_2 C_1} + \frac{1 - K}{R_2 C_2}\right)}$$

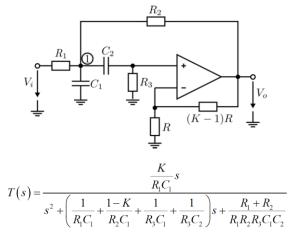
High-pass filter



$$T(s) = \frac{Ks^2}{s^2 + \left(\frac{1}{R_2C_2} + \frac{1}{R_2C_1} + \frac{1-K}{R_1C_1}\right)s + \frac{1}{R_1R_2C_1C_2}}$$

$$\omega_0 = \frac{1}{\sqrt{R_1 R_2 C_1 C_2}} \qquad Q_0 = \frac{\omega_0}{\left(\frac{1 - K}{R_1 C_1} + \frac{1}{R_2 C_1} + \frac{1}{R_2 C_2}\right)}$$

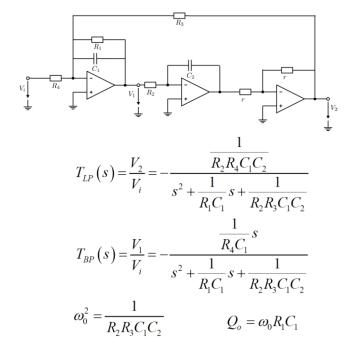
Band-pass filter



$$\omega_0 = \sqrt{\frac{R_1 + R_2}{R_1 R_2 R_3 C_1 C_2}} \qquad Q_0 = \frac{\omega_0}{\left(\frac{1}{R_1 C_1} + \frac{1}{R_3 C_2} + \frac{1}{R_3 C_1} + \frac{1 - K}{R_2 C_1}\right)}$$

Tow-Thomas Biquad filter

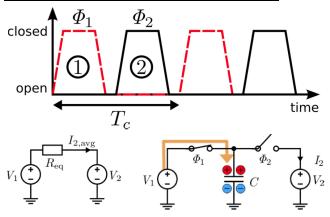
Less sensitive to tolerance difference; combine Sallen-Keys



8. Switched capacitor filters

Motivation: some systems require an active RC low-pass filter with very low $f_{cutoff} \rightarrow$ We need a large resistor in a highly integrated chip, whereby it is also inaccurate.

Concept of switched capacitor devices



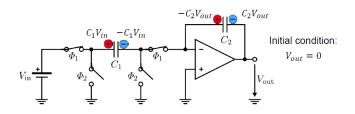
Transfer of charge ΔQ from potential V_1 to potential V_2 at a fixed rate $f_c = \frac{1}{T_C}$.

Transferred charge per T_C : $\Delta Q = C (V_1 - V_2)$

Average current: $I_{2,avg} = \frac{\Delta Q}{T_C} = \frac{C(V_1 - V_2)}{T_C}$

Equivalent resistor: $R_{eq} = \frac{T_C}{C} = \frac{1}{f_C C}$

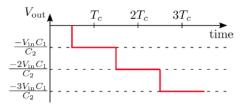
Inverting Integrator using SC

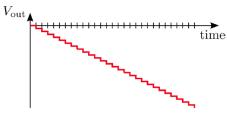


Phase 1: Φ_1 on , charge accumulates on C_1 and C_2

Phase 2: Φ_2 on, C_1 is discharged

$$C_2 V_{out}[nT_C] = C_2 V_{out}[(n-1)T_C] - C_1 V_{in}[nT_C]$$





 \Rightarrow seems continuous for small enough T_C

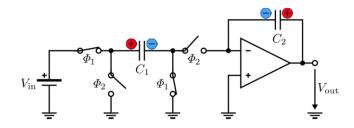
$$V_{out}[n T_C] = -\frac{C_2}{T_C C_2} \int_0^{n T_C} V_{in}(t) dt$$

Ratio of capacitors can be realized more accurate than absolute values of R and C.

Z-transform

Definition	$Z\{x[nT_c]\} = X(z)T = \sum_{k=-\infty}^{\infty} x[kT_c]z^{-k}$	
Time delay	$Z\{x[(n-k)T_c]\} = z^{-k}X(z)$	
Mapping to Laplace domain	$s = \frac{z-1}{T_c}$ or $s = \frac{1-z^{-1}}{T_c}$ (forward/backward Euler transform)	
Mapping to jω-axis	$z = e^{j\omega T_c} = e^{j\frac{2\pi f}{f_c}}$	

Non-inverting Integrator using SC



Same circuit as before, only change of switching schedule \Rightarrow Charge on C_2 is inverted compared to before

Phase 1: C_1 is charged to V_{in}

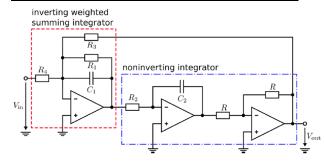
Phase 2: Charge is transferred to C_2

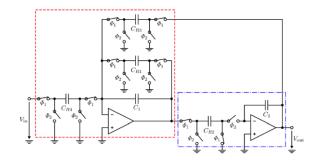
$$C_2 V_{out}[n T_C] = C_2 V_{out}[(n-1)T_C] + C_1 V_{in}[n T_C]$$

$$C_1 V_{in}(z) = C_2 (1-z^{-1}) V_{out}(z)$$

$$\frac{V_{out}(z)}{V_{in}(z)} = \frac{C_1}{C_2} \frac{1}{1 - z^{-1}}$$

Switched capacitor Tow-Thomas biquad





⇒ Replace all reistors by switched capacitors

$$T(z) = \frac{V_{out}(z)}{V_{in}(z)} = -\frac{c_{R4}}{c_{R3}} \frac{\frac{c_{R2}c_{R3}}{c_1c_2}}{z^{-2} + z^{-1} \left(-2 - \frac{c_{R1}}{c_1}\right) + 1 + \frac{c_{R1}}{c_1} + \frac{c_{R2}c_{R3}}{c_1c_2}}$$

$$T(s) = \frac{k\omega_0^2}{s^2 + \frac{\omega_0}{Q} s + \omega_0^2} \to T(z) \approx \frac{k(\omega_0 T_c)^2}{z^{-2} + z^{-1} \left(-2 - \frac{\omega_0 T_c}{Q}\right) + 1 + \frac{\omega_0 T_c}{Q} + \left(\omega_0 T_c\right)^2}$$

Design equations:

$$\frac{C_{R4}}{C_{R3}} = -k$$
, $\frac{C_{R2}}{C_2} = \frac{C_{R3}}{C_1} = \omega_0 T_C$, $\frac{C_{R3}}{C_{R1}} = Q$

Z-transform extended

Time discrete equivalent of the Laplace function.

$$X(z) = \sum_{k=-\infty}^{\infty} x[k]z^{-k}$$

Delay by n samples:

$$x[k] \to x[k-n] \iff X[z] \to z^{-n}X[z]$$

Transformation to frequency:

$$z = e^{i\omega T_c} = e^{\frac{i2\pi f}{f_c}}$$

Differentiation:

$$Z\left(\frac{df(t)}{dt}\right) \Rightarrow F(z)\frac{1-z^{-1}}{T_C}$$

Integration:

$$Z(\int f(t)dt) \Rightarrow F(z) \frac{T_C}{1-z^{-1}}$$

Forward Euler Transform: $s = \frac{z-1}{T_C}$

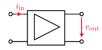
Backward Euler Transform : $s = \frac{1-z^{-1}}{T_C}$

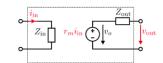
9. Appendix

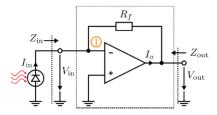
Transimpedance amplifiers

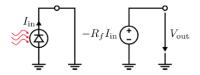
Sensing an input current & converting it to output voltage

$$r_m = \frac{dV_0}{dI_{in}}$$
, $Z_{in} \to 0$, $Z_{out} \to 0$

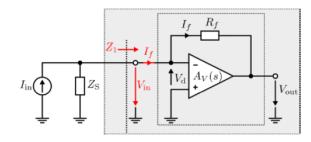








Frequency Response of Transimpedance Amplifiers



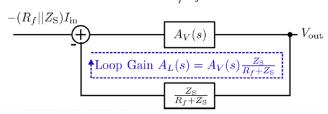
Transimpedance experiences broadbanding due to feedback:

$$Z_{T}' = \frac{V_{out}}{I_f} = -A_v(s)Z_1 = \frac{R_f A_0}{1 + A_0 + \frac{s}{\omega_{p_0}}} \approx \frac{R_f}{1 + \frac{s}{A_0 \omega_{p_0}}}$$

Bandwidth is limited by GBP of op-amp.

 $A_L(s) = A_V(s) \frac{Z_s}{R_f + Z_s}$ Loop gain:

 $\beta(s) = \frac{Z_s}{R_f + Z_s}$ Feedback-factor:



→ High bandwith trade-off: High transimpedance gain results in lower bandwidth

Due to the capacitance $C_s' = C_s + C_{in}$ the transimpedance amplifier becomes a second-order system with DC transimpedance gain $\approx -R_f$ and a loop gain

$$A_L(s) = A_V(s) = \frac{A_0}{\left(1 + \frac{s}{\omega_{p_0}}\right)\left(1 + \frac{s}{\omega_{p_s}}\right)}$$

Step Response of Second-Order Systems

$$\begin{split} Z_T(s) &= \frac{V_{out}}{I_{in}} = -R_f \frac{\omega_n^2}{(s - p_1)(s - p_2)} = \\ &= -R_f \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} \end{split}$$

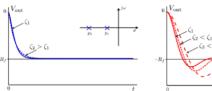
Characteristic equation: $s^2 + 2\zeta \omega_n s + \omega_n^2 = 0$:

$$\begin{split} \omega_n &= \sqrt{A_0} \omega_{p_0} \omega_{p_s} \qquad \zeta = \frac{\omega_{p_0} + \omega_{p_s}}{2\sqrt{A_0} \omega_{p_0} \omega_{p_s}} \\ p_1 &= -\zeta \omega_n + \omega_n \sqrt{\zeta^2 - 1} \\ p_1 &= -\zeta \omega_n - \omega_n \sqrt{\zeta^2 - 1} \\ \omega_{p_0} &= -p_0 \qquad A_0 \omega_{p_0} = GBP \\ \omega_{p_s} &= \frac{1}{R_f C_s'} \qquad Q = \frac{1}{2\zeta} \end{split}$$

System behavior:

Overdamped ($\zeta > 1$): p_1, p_2 are real and negative Critically damped ($\zeta = 1$): $p_1 = p_2 = -\omega_n$ Underdamped (0 $< \zeta < 1$): p_1, p_2 are complexe conjugates

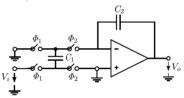
Overdamped

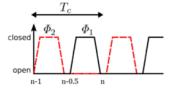


Underdamped

Switched Capacitors Examples

Example:

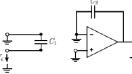




At the end of
$$\Phi_1(n-1)$$
:

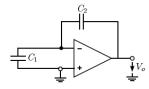
$$Q_{C1} = C_1 \cdot V_i(n-1)$$

$$Q_{C2} = C_2 \cdot V_0(n-1)$$



At the end of $\Phi_2(n-0.5)$:

$$\begin{aligned} Q_{C1} &= C_1 \cdot 0 \\ Q_{C2} &= C_2 \cdot V_0 (n - 0.5) \end{aligned}$$



Charge conservation:

At
$$(n - 0.5)$$
:

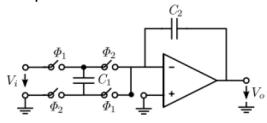
$$C_2V_0(n-0.5) = C_2V_0(n-1) + C_1V_i(n-1)$$

At (n): (nothing happens to Q_{C2})

$$C_2V_0(n) = C_2V_0(n - 0.5)$$

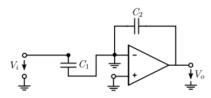
Results in:

$$\begin{split} &C_2V_0(n) = C_2V_0(n-1) + C_1V_i(n-1) \\ &C_2V_0(Z) = C_2Z^{-1}V_0(Z) + C_1Z^{-1}V_i(Z) \\ &\frac{V_0(Z)}{V_i(Z)} = \frac{C_1}{C_2}\frac{Z^{-1}}{[1-Z^{-1}]} \end{split}$$



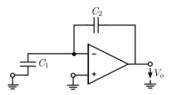
@
$$\Phi_1(n-1)$$
:

$$Q_1 = C_1 V_i(n-1)$$
 $Q_2 = C_2 V_0(n-1)$



@
$$\Phi_1(n-0.5)$$
:

$$Q_1 = 0$$
 $Q_2 = C_2 V_0 (n - 0.5)$



Charge conservation:

Überlegen wo positive und negative Ladung hingeht.

Verstärker verstärkt solange bis die

eingangsspannungsdifferenz 0 ist.

$$C_2 V_0(n-0.5) = C_2 V_0(n-1) - C_1 V_i(n-1)$$

@ (n):

$$C_2V_0(n) = C_2V_0(n - 0.5) - C_1V_i(n)$$

$$\Rightarrow C_2V_0(n) = C_2V_0(n-1) - C_1V_i(n-1) - C_1V_i(n)$$

$$\Rightarrow \frac{V_0(z)}{V_i(z)} = -\frac{C_1}{C_2} \frac{1 + Z^{-1}}{1 - Z^{-1}}$$