Lineare Algebra Zusammenfassung

Andreas Biri, D-ITET 2013 31.07.13

Lineares Gleichungssystem

Gauss-Zerlegung

Lösungsmenge: Menge aller Lösungen eines linearen Gleichungssystems (GS)

Äquivalentes GS: 1) Vertauschen v. Zeilen 2) Addition eines Vielfachen einer Z. zu anderen

- Gauss 1. Pivot finden im Eliminationsschema, s.d. Pivot ≠ 0 (wenn möglich 1!)
 - -> falls alle Koeff. der Spalten = 0 -> freier Parameter, da unbestimmbar
 - 2. Von anderen Zeilen Koeffizient/Pivot * Pivot-Zeile subtrahieren -> Var. eliminieren
 - 3. Falls triviale Lösung (x = ...) im Endschema
 - -> Verträglichkeitsbedingungen: Muss auflösen können (NICHT 0 0 = 5)
 - -> wenn ja: Rückwärtseinsetzen

r: Rang, Anzahl Nicht-Nullzeilen / Pivot-Variablen im Hauptteil, $r \le m$, $r \le n$

m : Gleichungen

n : Unbekannte

Freie Parameter: n – r freie Parameter, entspricht Anzahl Nullzeilen

Für Koeffizientenmatrix A und Spaltenvektor $x = \begin{pmatrix} x_1 \\ \dots \\ x \end{pmatrix}$:

A * x = b

A * x : Hauptteil ; b : rechte Seite

Satz 1.1 - 1.7 :

- i) Das GS hat mindestens eine Lösung, wenn r = m oder r < m und $c_i = 0$, i = r+1, ..., m
- ii) Lösung eines lin. GS ist genau dann eindeutig, falls r = n.
- iii) Ein homogenes GS hat eine nichttriviale Lösung, wenn r < n ist (da dann freie Paras).
- iv) Ein lin. GS ist genau dann für beliebige rechte Seiten lösbar, wenn r = m.
- v) Für m = n ist genau dann eindeutig, wenn für jede rechte Seite lösbar.
- vi) Für m = n ist lin. GS für jede rechte Seite lösbar, wenn das dazugehörige homogenes System nur die triviale Lösung besitzt.

LR - Zerlegung

Aufwand Gauss für reguläre n x n Matrix : $\frac{n^3}{n} - \frac{n}{n}$

LR: für jede Koeffizientenmatrix nur einmal ausrechnen! -> danach Aufwand n^2

L : Speichern der Quotienten Koeffizient / Pivot in leeren Nullstellen für später

ACHTUNG bei 0-Spalten: Speichern in gleicher Spaltennummer wie Zeilennummer des Pivots nach Permutationstausch (überspringe Eliminationsschritt, aber nicht L-Spalte)

Permutationsmatrix P: Einheitsmatrix I_n, um Zeilentausche zu rekonstruieren

L (ohne Einsen) und R können aus dem erweiterten Endschema abgelesen werden

PA = LR1. LR – Zerlegung von A: Mit Gauss L, R u. P bestimmen, s.d.

2. Vorwärtseinsetzen: Auflösen nach c Lc = Pb

Rx = c3. Rückwärtseinsetzen: Bestimme die Lösung x des GS

$$PA = LR$$
, $L = \begin{pmatrix} 1 & 0 \\ & \ddots \\ * & 1 \end{pmatrix}$, $R = \begin{pmatrix} r_{11} & \cdots & r_{1n} \\ & \ddots & \vdots \\ 0 & & r_{mn} \end{pmatrix}$

R: Gaussendschema, L: Faktoren der Gausszerlegung

P: Permutationsmatrix (I_n mit Zeilenvertauschungen)

Rang einer Matrix: entspricht Rang des lin. Gleichungssystems A * x = 0

A regulär \leftrightarrow Rang A = n

Satz 6.2: Sei A eine m x n Matrix, B₁ reguläre m x m, B₂ reguläre n x n Matrix.

i) $Rang A = Rang A^T$

[Spaltenrang = Zeilenrang]

ii) $Rang B_1 A = Rang A$

iii) $Rang A B_2 = Rang A$

Matrizen

 $m \times n \ Matrix : m \ Zeilen \ (i, \rightarrow) \ , n \ Spalten \ (j, \downarrow) \ mit \ m*n \ Elementen \ a_{ij}$ quadratische Matrix : n * n, gleich viele Spalten wie Zeilen obere / Rechts- Dreiecksmatrix : alle Elemente unter der Diagonalen = 0 untere / Links- Dreiecksmatrix : alle Elemente über der Diagonalen = 0 Diagonalmatrix : lediglich Diagonalelemente, D = diag($d_{11}, d_{22}, ...$) Einheitsmatrix / Identität : $I_n = diag(1, 1, ...)$

Matrixprodukt A * B : $\sum_{k=1}^{n} (A)_{ik} * (B)_{kj}$, wobei resultierende Matrix # Zeilen_A * # Spalten_B existiert lediglich, falls A gleich viele Spalten wie B Zeilen hat. AB \neq BA

Satz 2.1 : i) Kommutativgesetz: A + B = B + A

ii) Assoziativgesetz Addition: (A + B) + C = A + (B + C)

iii) Assoziativgesetz Multiplikation: (AB) * C = A * (BC)

iv) Distributivgesetz: (A + B) * C = AC + BC, A * (C + B) = AC + AD

Satz 2.2, 2.3, 2.5: $a^{(i)} = Spaltenvektor n \times 1$; $a^{[i]} = Zeilenvektor 1 \times n$

- i) $A * e^{(i)} = a^{(i)} = i$ -ter Spaltenvektor von A
- ii) A * x = $x_1 * a^{(1)} + x_2 * a^{(2)} + ...$
- iii) $AB = (Ab^{(1)} Ab^{(2)} ... Ab^{(p)})$
- iv) e[i] * B = b[i] = i-ter Zeilenvektor von B
- v) $y * B = y_1 * b^{[1]} + y_2 * b^{[2]} + ...$
- vi) AB = $(a^{[1]}B \dots a^{[n]}B)^T = a^{(1)}b^{[1]} + a^{(2)}b^{[2]} + \dots + a^{(n)}b^{[n]}$

<u>Transponierte Matrix</u>: $(A^T)_{ij} := (A)_{ji}$ -> Spiegeln an der Diagonalen: $m \times p \rightarrow p \times m$ **symmetrisch**: falls $A^T = A$

Satz 2.4: i)
$$(A^{T})^{T} = A$$

ii)
$$(A + B)^{T} = A^{T} + B^{T}$$

iii)
$$(AB)^T = B^T * A^T$$

Inverse einer quadratischen Matrix

Matrix X ist *Inverse* von A, falls: $A * X = I_n \rightarrow X = A^{-1}$

regulär / invertierbar : falls A eine Inverse hat (Inverse ist eindeutig bestimmt!)

singulär : falls A keine Inverse hat

Satz 2.7: i) $A^{-1} * A = I_n$

- ii) $(A^{-1})^{-1} = A$
- iii) $I_n^{-1} = I_n$
- iv) $(AB)^{-1} = B^{-1}A^{-1}$
- $V) (A^T)^{-1} = (A^{-1})^T$

Satz 2.8: Für n x n Matrix A sind folgende Aussagen äquivalent:

- i) A ist regulär / invertierbar.
- ii) Das Gleichungssystem Ax = b ist für jedes b lösbar.
- iii) Das Gleichungssystem Ax = 0 hat nur die triviale Lösung x = 0 (-> Rang = n)

Inverse einer 2×2 -Matrix:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Inverse einer 3×3 -Matrix:

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}, \quad A^{-1} = \frac{1}{\det A} \begin{pmatrix} ei - fh & ch - bi & bf - ce \\ fg - di & ai - cg & cd - af \\ dh - eg & bg - ah & ae - bd \end{pmatrix}$$

Berechnung mittels Gauss

- 1. $Ax = I_n$, Gleichungssystem aufstellen und Lösen
- 2. Umformen, so dass links die Einheitsmatrix steht
 - -> rechts ist die Inverse der Matrix A

Orthogonale Matrix

Matrix A heisst orthogonal, falls: $A^T * A = I_n \rightarrow A^T = A^{-1}$

Satz 2.9: Seien A und B orthogonale n x n Matrizen.

- i) A ist invertierbar und $A^{-1} = A^{T}$
- ii) A⁻¹ ist orthogonal.
- iii) AB ist orthogonal.
- iv) I_n ist orthogonal.

Givensrotation

$$U(\varphi) = \begin{pmatrix} \cos \varphi & 0 & \sin \varphi \\ 0 & 1 & 0 \\ -\sin \varphi & 0 & \cos \varphi \end{pmatrix}$$

$$U(\varphi)^T = U(-\varphi)$$

Householdermatrix Sei u ein Spaltenvektor mit

$$u^T u = \sum_{i=1}^n u_i^2 = 1.$$

Dann ist uu^T eine n x n-Matrix mit $(uu^T)_{ij}=u_i\,u_j$. Die Householdermatrix ist symmetrisch und orthogonal:

$$Q := I_n - 2uu^T$$

Determinanten (nur für quadratische Matrizen)

Die Determinante $|A| = \det(A)$ charakterisiert, ob die Matrix regulär oder singulär ist.

Berechnung: (1.Teil - 2. Teil + 3. Teil - ...)

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a * d - c * d$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ a & h & i \end{vmatrix} = a * \begin{vmatrix} e & f \\ h & i \end{vmatrix} - d * \begin{vmatrix} b & c \\ h & i \end{vmatrix} + g * \begin{vmatrix} b & c \\ e & f \end{vmatrix}$$

Satz 3.1, Satz 3.6, Satz 3.8:

- i) Werden 2 Zeilen vertauscht, so wechselt |A| ihr Vorzeichen.
- ii) Wird ein Vielfaches einer Zeile addiert, bleibt sie unverändert.
- iii) Wird eine Zeile mit α multipliziert, so wird auch |A| mit α multipliziert.
- iv) det (AB) = det (A) * det (B)
- v) falls A invertierbar (det A \neq 0): det $A^{-1} = \frac{1}{\det A}$

Folgerungen:

- 1) Die Determinante einer Matrix mit zwei gleichen Zeilen ist gleich null.
- 2) Die Determinante einer Matrix, die eine Zeile aus lauter Nullen enthält, ist gleich null.

Lemma 3.2: Die Determinante einer Dreiecksmatrix ist gleich dem Produkt ihrer Diagonalelemente ($det (D) = d_{11} * d_{22} * ... * d_{nn}$) (normale Matrix -> Gauss)

Satz 3.3 : $\det A^T = \det A$ -> für Spalten gilt gleiches wie für Zeilen

Entwicklung nach Zeile / Spalte:

Berechnung nach i-ter Zeile (x = j) oder j-ter Spalte (x = i)

$$\sum_{r=1}^{n} (-1)^{i+j} * a_{ij} * \det(A_{ij})$$

Entwicklung nach 1. Spalte:

$$|A| = a_{11} * \det(A_{11}) - a_{21} * \det(A_{21}) + ... + (-1)^{n+1} * a_{n1} * \det(A_{n1})$$

Lemma 3.7: Blockdreiecksmatrizen

Sei A eine m x m Matrix, B eine m x n Matrix und C eine n x n Matrix, so gilt für die (m+n) x (m+n) Matrix

$$M = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$
: det M = (det A)(det C)

Satz 3.9: Berechnung über Gauss

Für eine LR-Zerlegung von A gibt:

$$det(A) = (det P)(det R) = (-1)^{Anzahl Zeilenvertauschungen} * det R$$

wobei

i)
$$r = n$$
: det $R = r_{11} * r_{22} * ... * r_{nn}$ (Dreiecksmatrix)

ii)
$$r < n$$
: det $R = 0$ (da Nullzeilen)

Satz 3.11: Für eine n x n Matrix A sind folgende Aussagen äquivalent:

- i) Die Matrix A ist invertierbar / regulär.
- ii) det A ≠ 0
- iii) Im Gauss-Endschema ist r = n.
- iv) Das lineare Gleichungssystem Ax = b ist für jedes b lösbar.
- v) Die Lösung des linearen Gleichungssystems Ax = b ist eindeutig bestimmt.
- vi) Das lineare Gleichungssystem Ax = 0 hat nur die triviale Lösung x = 0.

Korollar: A regulär \leftrightarrow det A \neq 0 \leftrightarrow A invertierbar

Korollar 3.12:

$$Ax = 0$$
 $Ax = b$

 $|A| \neq 0$ Nur die triviale Lösung Genau eine Lösung

|A| = 0 Unendlich viele Lösungen Keine oder unendlich viele Lösungen

<u>Vektorräume</u>

Reeller/Komplexer Vektorraum: Menge von Objekten (Vektoren) mit folgenden Eigenschaften:

-) Addition ist definiert: $a, b \in V : a + b \in V$
- ii) Multiplikation ist definiert: $\alpha \in V, \alpha \in \mathbb{R}/\mathbb{C} : \alpha * \alpha \in V$

Rechenregeln: $a, b \in V$, $\alpha, \beta \in \mathbb{R}/\mathbb{C}$

- i) a+b=b+a
- i) Es gibt einen **Nullvektor** (0), s.d.: a + 0 = a
- iii) Zu jedem Vektor a existiert ein entgegengesetzter Vektor -a, s.d. : a + (-a) = 0
- iv) $(\alpha + \beta)a = \alpha a + \beta a$, $\alpha(a + b) = \alpha a + \alpha b$

C[a,b]: Menge der im Intervall I=[a,b] definierten und stetigen Funktionen

$$\mathbb{R}^n = \left\{ x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} \middle| x_1, \dots, x_n \in \mathbb{R} \right\} \qquad \text{(n x 1) , wobei } x_1, \dots, x_n \text{ Koordinaten des Vektors}$$

<u>Unterraum:</u> nichtleere Teilmenge U eines Vektorraums V, falls erfüllt:

- i) Für $a, b \in U$ ist auch $a + b \in U$ (0-Vektor auch Element von U)
- ii) Für $a \in U$, α eine Zahl ist auch $\alpha a \in U$ (-a auch Element von U)

Bemerkung:

i) Es gibt immer die zwei trivialen Unterräume:

V selbst und {0}, d.h. die Menge, die nur aus dem Nullvektor besteht.

ii) Für U₁, U₂ Unterräume von V sind folgende Kombinationen ebenfalls Unterräume:

$$U_1 + U_2$$
, $U_1 \cap U_2$ (aber NICHT $U_1 \cup U_2$)

Definition: U heisst der von $a^{(1)}$, $a^{(2)}$, ..., $a^{(k)}$ aufgespannte oder erzeugte Unterraum:

$$U = span\{a^{(1)}, a^{(2)}, ..., a^{(k)}\}$$

• Die Vektoren a⁽¹⁾, ... , a^(k) sind ein *Erzeugendensystem des Vektorraums V/ erzeugend*

Finden der erzeugenden Vektoren:

1. Matrix des Unterraums mittels Gauss lösen -> freie Parameter

2. Gleichungen $x_1 = ..., x_2 = ...$ in Vektoren schreiben: $\binom{-17}{5} * x_3 + \binom{3}{2} * x_4 \rightarrow a_1 \ etc.$

<u>Polynom</u>: $P(x) = a_0 + a_1^*x + a_2^*x^2 + ... + a_n^*x^n$

a_n: Koeffizienten des Polynoms

Beispiel: Vektorraum $P^4 \in P \in [a, b]$

$$P^{4} := \{a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + a_{4}x^{4} | a_{0}, \dots, a_{4} \in \mathbb{R}\}$$

$$= \operatorname{span}\{1, x, x^{2}, x^{3}, x^{4}\}$$

$$= \operatorname{span}\{P_{0}(x), P_{1}(x), P_{2}(x), P_{3}(x), P_{4}(x)\}$$

<u>Def:</u> $P_i(x)$ sind die sogenannten **Legendre-Polynome**. Sie sind wie folgt definiert:

$$\begin{split} P_0(x) &= 1, \qquad P_i(x) = \frac{1}{2^i i!} \frac{\mathrm{d}^i}{\mathrm{d} x_i} (x^2 - 1)^i \quad \text{für } i > 0. \\ P_0(x) &= 1, \\ P_1(x) &= x, \\ P_2(x) &= \frac{3}{2} x^2 - \frac{1}{2}, \\ P_3(x) &= \frac{5}{2} x^3 - \frac{3}{2} x, \\ P_4(x) &= \frac{35}{8} x^4 - \frac{15}{4} x^2 + \frac{3}{8}. \end{split}$$

endlichdimensional: falls V ein Erzeugendensystem besitzt; zB. \mathbb{R}^n , \mathbb{P}_n unendlichdimensional: falls V kein Erzeugendensystem besitzt; zB. $\mathcal{C}[a,b]$, \mathbb{P} (Menge aller P)

<u>Definition</u>: Falls gilt $x_1^*a^{(1)} + x_2^*a^{(2)} + ... + x_k^*a^{(k)} = 0$, ist V

 $\label{eq:linear unabhängig} \quad \text{, falls } x_1 = x_2 = ... = x_k \ = 0 \ \text{ folgt}.$

linear abhängig , falls es Koeffizienten ≠ 0 gibt.

Basis: falls das Erzeugendensystems eines VR linear unabhängig ist, heisst es Basis.

Satz 4.1: Basis ist minimales Erzeugendensystem

- i) Verschiedene Basen desselben Vektorraums bestehen aus gleich vielen Vektoren.
- ii) Eine Basis hat weniger oder gleich viele Vektoren wie ein Erzeugendensystem.
- iii) Menge d. linear unabh. Vektoren ≤ Menge d. erzeugenden Vektoren

<u>Dimension von V:</u> entspricht der Anzahl Basisvektoren, == Rang des GS (Gauss)

Bemerkung: Nullvektor immer lin. abh. -> $dim\{0\} = 0$; $dim\{unendlichdim. VR\} = \infty$

Satz 4.3: Für einen Vektorraum V mit Dimension n gilt:

- i) Mehr als n Vektoren in V sind linear abhängig.
- ii) Weniger als n Vektoren in V sind nicht erzeugend.
- iii) n Vektoren in V sind linear unabhängig genau dann, wenn sie erzeugend sind, und genau dann bilden sie eine Basis.

Anmerkung: Jeder reeler n-dimensionaler Vektorraum V ist eine exakte Kopie des \mathbb{R}^n , also isomorph zu \mathbb{R}^n (dieser perfektes Spiegelbild des Rests).

Berechnungen mit Gauss: A := ($a^{(1)}$, $a^{(2)}$, ..., $a^{(k)} \in \mathbb{R}^n$)

Erzeugend: Falls Ax = b für jedes b eine Lösung $\leftrightarrow r = n$

Linear unabhängig: Falls Ax = 0 nur die triviale Lösung besitzt $\leftrightarrow r = k$

Der Rang einer Matrix A entspricht der maximalen Anzahl linear unabhäng. Spaltenvektoren.

-> Pivotspalten $r^{(i_1)}, ..., r^{(i_k)} \rightarrow a^{(i_1)}, ..., a^{(i_1)}$ Spaltenvektoren sind lin. unabhängig.

Normierte Vektorräume

Norm (oder Länge) : Ordnet jedem Vektor $a \in V$ eine reelle Zahl ||a|| , falls gilt:

- i) $\forall a \in V : ||a|| \ge 0; ||a|| = 0 \rightarrow a = 0$
- ii) $\forall \alpha \in V, \alpha \in \mathbb{R} : \|\alpha \alpha\| = |\alpha| * \|\alpha\|$
- iii) Dreiecksungleichung: $||a + b|| \le ||a|| + ||b||$

<u>L_P- Norm:</u>

$$||x||_p := \sqrt[p]{|x_1|^p + |x_2|^p + \ldots + |x_n|^p}$$

 $||x||_1 = |x_1| + |x_2| + \dots + |x_n|$

L₂: euklidische Norm $||x||_2 = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$

 L_{∞} : Maximumnorm $||x||_{\infty} = \max(|x_1|, ..., |x_n|)$

Satz 4.4 (Äquivalenz) : Für zwei Normen ||x|| und ||x||' gibt es eine Zahl $c \ge 1$, s.d. :

$$\frac{1}{c} \|x\|' \le \|x\| \le c \|x\|'$$

Normen in C[a,b]: I = [a,b]

Norm
$$\approx$$
 Abstand zum Nullvektor \Rightarrow $||f||_0 := \max_{x \in I} |f(x)|$

f'(x) Ableitung
$$||f||_1 := \max_{x \in I} |f(x)| + \max_{x \in I} |f'(x)|$$

Skalarprodukt (a,b)

$$||a|| = \sqrt{(a,a)}$$
 ist die "vom Skalarprodukt induzierte Norm" : $||*||$

Skalarprodukt: Eine Funktion, die jedem Paar x,y eine Zahl (x,y) zuordnet, falls:

i)
$$(x, y^1 + y^2) = (x, y^1) + (x, y^2)$$
 ; $(x, \alpha y) = \alpha(x, y)$ (linear im 2. Faktor)

ii)
$$(x, y) = (y, x)$$
 (symmetrisch)

iii)
$$(x, x) \ge 0$$
 ; $(x, x) = 0 \rightarrow x = 0$ (positiv definiert)

Standartskalarprodukt: $\mathbb{R}^n \rightarrow (x,y) = x^T y = |x||y|\cos\varphi$

$$\mathbb{C}^n \qquad \to \quad (x,y) = \ \bar{x}^T y$$

$$C[a,b] \rightarrow (x,y) = \int_{b}^{a} f(t)g(t) dt$$

orthogonal: Zwei Vektoren sind orthogonal /stehen senkrecht aufeinander, falls (x,y) = 0.

Satz 4.5: Sei V ein reeller Vektorraum mit Skalarprodukt

- i) Die orthogonale Projektion eines Vektors x auf den Vektor y $\neq 0$ ist: $\frac{(y,x)}{(y,y)}$ y
- ii) Schwarz'sche Ungleichung: $(x,y)^2 \le (x,x)(y,y)$
- iii) Pythagoras: $||x + y||^2 = ||x y||^2 = ||x||^2 + ||y||^2$

$$\cos \varphi = \frac{(a,b)}{\|a\| \|b\|} = \frac{(a,b)}{\sqrt{(x,x)(y,y)}}$$

Einheitsvektor: Vektor x der Länge ||x|| = 1

Satz 4.6, 4.7: Orthonormale Basis

- i) k paarweise orthogonale Einheitsvektoren sind linear unabhängig.
- i) In einem reellen n-dimensionalen Vektorraum bilden n paarweise orthogonale Einheitsvektoren eine orthonormale Basis.

Schmidt'sches Orthogonalisierungsverfahren

1.
$$e^{(1)} := \frac{1}{\|b^{(1)}\|} b^{(1)}$$

2.
$$e^{(2)} := \frac{1}{|a|} e^{(2)} c^{(2)}$$
, $e^{(2)} := e^{(2)} - (e^{(2)}, e^{(1)}) e^{(1)}$

3.
$$e^{(3)} := \frac{1}{\|c^{(3)}\|} e^{(3)}, \quad c^{(3)} := b^{(3)} - (b^{(3)}, e^{(1)}) e^{(1)} - (b^{(3)}, e^{(2)}) e^{(2)}$$

4. analog

Oder mit **QR-Zerlegung:** Die Spalten der Matrix A sind eine Basis des \mathbb{R}^n . Dann sind die Spalten von Q die orthonormale Basis.

Ausgleichsrechnung – Methode der kleinsten Quadrate

Messungenauigkeiten -> exakte Lösung approximieren mit minimalen Abweichungen

Überbestimmtes Gleichungssystem:

$$\overrightarrow{A}x = \overrightarrow{c}$$
, $m > n$, $A := (a^{(1)} \dots a^{(n)})$

Methode der kleinsten Quadrate: Fehlergleichung

$$\overrightarrow{A} x - \overrightarrow{c} = \overrightarrow{r}$$

- Der Residuenvektor \vec{r} ist die Differenz des Vektors \vec{a} und des Konstantenvektors \vec{c} . Dabei ist \overrightarrow{a} die Linearkombination der n Vektoren $a^{(1)}$, ..., $a^{(n)}$ mit x^1 , ..., x^2 .
- Möglichst kleiner Fehler, wenn \vec{r} senkrecht auf allen Spaltenvektoren von A, also alle Skalarprodukte $(a^{(j)}, r)$, j = 1, ..., n gleich null sind.

Normalengleichungen:

$$(A^T A) x = A^T c$$
 -> Gauss

Dabei ist A^{T} A eine symmetrische $n \times n$ Matrix, A^{T} c ein n-Vektor.

Berechnung
$$A^{T}A:\begin{pmatrix} (a^{1}, a^{1}) & \cdots & (a^{1}, a^{n}) \\ \vdots & \ddots & \vdots \\ (a^{n}, a^{1}) & \cdots & (a^{n}, a^{n}) \end{pmatrix}$$
 symmetrisch, $(a,b) = (b,a)$

$$A^{T}c:\begin{pmatrix} (a^{1}, c) \\ \cdots \\ (a^{n}, c) \end{pmatrix}$$

- Ist x* Lösung der Normalengleichungen, so minimiert x* die Fehlergleichun-Satz 5.1: i) gen im Sinne der kleinsten Quadrate.
 - Sind die Spalten der Koeffizientenmatrix A der Fehlergleichungen linear unabhängig, so besitzen die Normalengleichungen eine eindeutig bestimmte Lösung.

QR- Zerlegung

Sei Q eine orthogonale m x m Matrix.

$$Q^{T} Ax - Q^{T} c = Q^{T} r =: s$$

$$R x - d = s$$

Satz 5.2 : i) Zu jeder m x n Matrix A, mit $m \ge n$, existiert eine orthogonale m x m Matrix Q, so dass gilt:

$$A = QR$$
 mit $R = \begin{pmatrix} R_0 \\ -- \\ 0 \end{pmatrix}$

wobei R₀ eine n x n –Rechtsdreieckmatrix ist und 0 die (m-n) x n –Nullmatrix.

Sind die Spaltenvektoren a⁽¹⁾, ..., a⁽ⁿ⁾ der Matrix A linear unabhängig, so ist die Matrix R₀ regulär.

Q ist das Produkt von $(m*n-\frac{n^2}{2}-\frac{n}{2})$ Givens-Rotationen.

Algorithmus:

- 1) $R := Q^T A$ (QR-Zerlegung von A mit Givens-Rotationen)
- $2) \quad d := O^T c$ (Transformation von c)
- 3) $R_0 x = d_0$ (Rückwärtseinsetzen)

Matlab-Code:

Normalengleichung: $x = A \setminus c$;

[Q,R] = qr(A); QR: 1)

- $x = R(1:n,:) \setminus d(1:n,:); % n Grösse$

Oder: 2) + 3) $x = R \setminus (Q' * c)$

Lineare Abbildungen

Def: Eine Abbildung $F: x \in V \to y = F(x) \in W$ heisst lineare Abbildung vom endlichdimensionalen Vektorraum V in den endlichdimensionalen Vektorraum W, falls:

- i) F(x + y) = F(x) + F(y)
- ii) $F(\alpha x) = \alpha * F(x)$

Anmerkung: Die lineare Abbildung F(x) lässt sich als Matrix A darstellen. (F(x) = A*x)

Satz 6.4: Verkettung linearer Abbildungen

- i) Die Zusammensetzung von linearen Abbildungen einst linear.
- ii) $F: x \in V^n \rightarrow y = Ax \in V^m, G: y \in V^m \rightarrow z = By \in V^p$

$$H := G \circ H$$
, $H : X \in V^n \rightarrow Z = BAX \in V^p$

Lineare Selbstabbildung

umkehrbar / invertierbar: Eine Abbildung $F: x \in V^n \to x' \in V^n$ heisst umkehrbar, falls es zu jedem x' ein eindeutig bestimmtes x gibt, sodass F(x) = x'.

Es existiert eine $Umkehrabbildung F^1$.

- Satz 6.7: i) Eine lineare Abbildung $F: x \in V^n \to x' = Ax \in V^n$ ist genau dann umkehrbar, wenn A regulär ist.
 - ii) Ist F umkehrbar, so ist F⁻¹ linear und wird durch die Matrix A-1 beschrieben:

$$F^{-1} \colon x' \to x = A^{-1} \, x'$$

iii) Ist F umkehrbar, so gilt: $F^{-1}\circ F=F\circ F^{-1}=I$, wobei I : Identität

Interpretation von Abbildungen

$$\begin{pmatrix} \cos\varphi & \sin\varphi \\ -\sin\varphi & \cos\varphi \end{pmatrix} \qquad \begin{array}{l} \textit{Givens-Matrix:} \ \textit{Drehung in } \mathbb{R}^2 \ \textit{in xy-Ebene} \ (\textit{um Nullpunkt}) \ \textit{im} \\ \textit{Uhrzeigersinn um den Winkel } \varphi. \\ \begin{pmatrix} \cos\varphi & \sin\varphi & 0 \\ -\sin\varphi & \cos\varphi & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \qquad \begin{array}{l} \textit{Givens-Matrix:} \ \textit{Drehung in } \mathbb{R}^3 \ \textit{in xy-Ebene} \ (\textit{um z-Achse}) \ \textit{im} \\ \textit{Uhrzeigersinn um den Winkel } \varphi. \\ \begin{pmatrix} \cos\varphi & 0 & \sin\varphi \\ 0 & 1 & 0 \\ -\sin\varphi & 0 & \cos\varphi \\ \end{pmatrix} \qquad \begin{array}{l} \textit{Givens-Matrix:} \ \textit{Drehung in } \mathbb{R}^3 \ \textit{in xy-Ebene} \ (\textit{um y-Achse}) \ \textit{im} \\ \textit{Gegenuhrzeigersinn um den Winkel } \varphi. \\ \end{pmatrix} \qquad \begin{array}{l} \textit{Givens-Matrix:} \ \textit{Drehung in } \mathbb{R}^3 \ \textit{in xy-Ebene} \ (\textit{um y-Achse}) \ \textit{im} \\ \textit{Gegenuhrzeigersinn um den Winkel } \varphi. \\ \end{pmatrix} \qquad \begin{array}{l} \textit{Keine Givens-Matrix:} \ \textit{Drehung in } \mathbb{R}^3 \ \textit{in xy-Ebene} \ (\textit{um y-Achse}) \ \textit{und Spiegelung an der xz-Ebene..} \\ \end{pmatrix} \qquad \begin{array}{l} \textit{Householdermatrix:} \ \textit{Spiegelung an der zweiten Winkelhalbierenden} \\ \end{pmatrix} \qquad \begin{array}{l} \textit{Householdermatrix:} \ \textit{Spiegelung an der xy-Ebene} \\ \end{pmatrix} \qquad \begin{array}{l} \textit{Spiegelung an der xy-Ebene} \\ \end{pmatrix} \qquad \begin{array}{l} \textit{Spiegelung an der xy-Ebene} \\ \end{array} \qquad \begin{array}{$$

Koordinatentransformation

ist eine umkehrbare lin. Abbildung T mit Basiswechsel : $T:y\in W^n\to x=Ty\in V^n$ In den Spalten von T stehen die n neuen Basisvektoren, ausgedrückt in alten Koordinaten.

Satz 6.8: Seien eine lineare Abbildung $F: x \in V^n \to x' = Ax \in V^n$ und eine Koordinatentransformation $T: y \in W^n \to y' = Ty \in V^n$ gegeben.

Dann lässt sich die lineare Abbildung in den neuen Koordinaten darstellen als:

$$G = T^{-1} \circ F \circ T : y \in W^n \rightarrow y' = T^{-1}ATy \in W^n$$

<u>Trick:</u> Anstelle T^{-1} ausrechnen, rechne ($B = T^{-1}AT$) : TB = AT, und löse mittels Gauss nach B (3 1-Spalten für B)

ähnlich: Die n x n Matrix B heisst ähnlich zur n x n Matrix A, falls es eine reguläre n x n Matrix T gibt, s.d.:

$$B = T^{-1}AT$$

(Selbe Abbildung bezüglich anderen Koordinaten)

Kern und Bild

Def: Sei $F: x \in V^n \to y = Ax \in V^m$ eine lin. Abbildung ($V = \mathbb{R} / \mathbb{C}$

i) Kern der Matrix A: Menge aller Vektoren, die auf null abgebildet werden:

$$Kern A := \{ x \in V^n \mid Ax = 0 \}$$

ii) Bild der Matrix A: Menge aller Bildvektoren :

Bild
$$A := \{ y \in V^m \mid Es \ gibt \ ein \ x \in V^n, s. \ d. \ y = Ax \}$$

Satz 6.1: Sei A = ($a^{(1)}$... $a^{(n)}$) eine m x n Matrix. Dann gilt:

i) b liegt genau dann im Bild von A, wenn das GS Ax = b lösbar ist.

Bild
$$A = span \{ a^{(1)} \dots a^{(n)} \}$$

- ii) Der Kern von A ist die Lösungsmenge des homogenen GS Ax = 0.
- iii) Kern A ist ein Unterraum von V^n \rightarrow dim $(Kern\ A\) = n r$ Bild A ist ein Unterraum von V^m \rightarrow dim $(Bild\ A\) = r$
- iv) Es gilt: $\dim(Kern A) + \dim(Bild A) = n = \dim V^n$
- v) Es gilt: $\dim(Bild A) = \dim(Bild A^T)$.
- **Satz 6.5:** i) Die Unterräume Bild A und Kern A^T von \mathbb{R}^m spannen \mathbb{R}^m auf:

$$Bild\ A + Kern\ A^T = \mathbb{R}^m$$

- ii) Die Unterräume Bild A und Kern A^T stehen senkrecht aufeinander.
- iii) $\dim(Bild\ A) + \dim(Kern\ A^T) = \dim \mathbb{R}^m = m$

<u>Fredholmsche Alternative</u>: Gleichunssystem Ax = b ist genau dann lösbar, wenn b senkrecht auf allen Lösungen des sogenannten *adjungierten* Gleichungssystems $A^{T} = 0$ steht $(= \text{Kern}(A^{T}))$.

Orthogonale Abbildungen

Def: Die Abbildung $F: x \in \mathbb{R}^n \to x' = Ax \in \mathbb{R}^n$ heisst

- i) **orthogonal**, falls (x', y') = (Ax, y) = (x, y)
- ii) **längentreu**, falls $||x'||_2 = ||Ax||_2 = ||x||_2$

Satz 6.10: Für $F: x \in \mathbb{R}^n \to x' = Ax \in \mathbb{R}^n$ ist äquivalent:

- i) F ist orthogonal
- ii) F ist längentreu
- iii) F ist winkeltreu
- iv) Die Spalten von A bilden eine orthonormale Basis in \mathbb{R}^n
- v) Die Matrix A ist orthogonal, d.h. es gibt $A^T A = I$, bzw. $A^T = A^{-1}$
- → Orthogonale Abbildungen sind volumenerhaltend

Satz 6.11, 6.12, 6.13: Volumen

Seien a⁽¹⁾, ..., a^(k) linear unabhängige Vektoren. Dann ist das Volumen des aufgespannten Parallelepipeds:

$$Vol_n^n(a^{(1)},...,a^{(n)}) = |\det(a^{(1)},...,a^{(n)})|$$

Anmerkung: beliebige Vektoren zuerst mittels Gauss linear unabhängig machen.

Norm einer Matrix

Gibt an, um welchen Faktor sich x maximal verändert, wenn x' = A x angewendet wird.

Def: Sei A eine n x n Matrix, und sein in V^n eine Norm $||x||_*$, $x \in V^n$ gegeben.

$$||A||_* = \max_{x \in V^n, x \neq 0} \left\{ \frac{||Ax||_*}{||x||_*} \right\} = \max_{||x||_* = 1} \{ ||Ax||_* \}$$

sei die von der Vektornorm $||x||_*$ induzierte Matrixnorm (eigentlich sup).

Satz 6.9: i) $||A||_* \ge 0$, aus $||A||_* = 0$ folgt A = 0

- ii) $\| \propto A \|_* = \| \propto \| \|A \|_*$
- iii) $||A + B||_* \le ||A||_* + ||B||_*$
- iv) $||Ax||_* \le ||A||_* ||x||_*$
- v) $||AB||_* \le ||A||_* ||B||_*$

Spaltensummenform: grösste Summe der Beträge einer Spalte : $\|A\|_1 = \max_j \sum_{i=1}^n |a_{ij}|$

Zeilensummenform: grösste Summe der Beträge einer Zeile: $||A||_{\infty} = \max_i \sum_{j=1}^n |a_{ij}|$

Spektralnorm: bezeichnet die 2-Norm $||A||_2$ einer reellen Matrix A

i) Für jede quadratische Matrix A gilt:

$$||A||_2 = \sqrt{\mu_{Max}} = \sqrt{maximaler\ Eigenwert\ von\ A^T A}$$

- ii) Für jede orthogonale Matrix Q gilt: $||Q||_2 = 1$
- iii) Ist A eine symmetrische Matrix, so gilt: $||A||_2 = max_i |\lambda_i|$

Matrixnorm der Inversen

i) Für jede invertiertbare Matrix A gilt:

$$||A^{-1}||_2 = \frac{1}{\sqrt{\mu_{Min}}} = \frac{1}{\sqrt{minimaler\ Eigenwert\ von\ A^T A}}$$

ii) Ist A symmetrisch, so ist $||A^{-1}||_2 = max_i \frac{1}{|\lambda_i|} = \frac{1}{min_i |\lambda_i|}$

Eigenwertproblem

Def: Sei A einen n x n Matrix, Abbildung $F : x \in \mathbb{C}^n \to Ax \in \mathbb{C}^n$

- i) Eine Zahl $\lambda \in \mathbb{C}$ heisst *Eigenwert der Matrix A*, falls es einen Vektor $x \in \mathbb{C}^n$, $x \neq 0$ gibt, so dass $Ax = \lambda x$.
- ii) Falls λ existiert, heisst jeder dazugehörige Vektor $x \in \mathbb{C}^n$, $x \neq 0$ Eigenvektor der Matrix A zum Eigenwert λ .

Satz 7.1: Die Zahl $\lambda \in \mathbb{C}$ ist genau dann ein Eigenwert der Matrix A, wenn

$$\det(A - \lambda I_n) = 0$$

 $P_A(\lambda) = \det(A - \lambda I_n) = 0$ heisst chrakteristisches Polynom der Matrix A

-> Nullstellen von $P_A(\lambda)$ sind Eigenwerte, $P_A(\lambda)$ Polynom n-ten Grades

Algebraische Vielfachheit k von λ^* : λ^* ist k-facher Eigenwert von A (k-fache NS von $P_A(\lambda)$)

Spektrum von A: Gesamtheit aller Eigenwerte

Es gelten folgende Aussagen:

- i) Jede n x n Matrix hat mindestens einen und höchstens n Eigenwerte.
 (falls mit algebraischer Vielfachheit gezählt, hat sie stets n Eigenwerte).
- ii) Für jeden Eigenwert ist die algebraische Vielfachkeit $1 \le k \le n$.
- Für jede reelle Matrix sind die Koeffizienten des charakt. Polynoms reell.Die Eigenwerte sind entweder reell oder treten in konj. kompl. Paaren auf.
- iv) λ^n ist ein Eigenwert von A^n , und $\frac{1}{\lambda}$ ist ein Eigenwert von A^{-1}

Komplexe EW: Für einen komplexen EW $\lambda = \alpha + i\beta$ und dazugehörigem EV u = x + iyIst auch $\bar{\lambda} = \alpha - i\beta$ EW von A mit EV u = x - iy (x,y lin. unabh.)

→ Komplexe Eigenwerte treten immer in konjugiert komplexen Paaren auf.

Komplexe EV: für einen EW EV finden und aufspalten: $v^{(k)} + i w^{(k)}$

Reelle Lsg. DGL: $2 * e^{\alpha t} ([a * \cos(\beta t) - b * \sin(\beta t)] * v^{(k)} - [a * \sin(\beta t) + b * \cos(\beta t)] * w^{(k)})$

Satz 7.2: Ähnliche Matrizen

- i) Ähnliche Matrizen haben das gleiche charakt. Polynom und somit dieselben Eigenwerte mit den gleichen algebraischen Vielfachheiten.
- ii) Ist $B = T^{-1}AT$ und x ein Eigenvektor von A zum Eigenwert λ , so ist $y = T^{-1}x$ ein Eigenvektor von B zum selben Eigenwert λ .

Eigenvektoren

x ist genau dann ein Eigenvektor, falls es das homogene Gleichungssystem löst:

$$(A - \lambda I_n)x = 0$$

Die Menge der Eigenvektoren ist gleich der Menge nichttrivialer Lösungen des homog. GS.

Def: Für den Eigenwert λ heisst die Menge aller Lösungen des homogenen Gleichungsyst. Eigenraum von A zum Eigenwert λ .

Die Dimension dieses Unterraums heisst *geometrische Vielfachheit* des Eigenwerts λ.

Geometrische Vielfachheit: wieviele Eigenvektoren existieren zum gegebenen Eigenwert.

Bemerkung: Für algebraische Vielfachheit 1 muss die geometrische VFH ebenfalls 1 sein.

Satz 7.3, 7.4

- i) $1 \le \text{geometrische Vielfachheit v. } \lambda \le \text{algebraische Vielfachheit v. } \lambda$
- ii) Für $\lambda_1 \dots \lambda_n$ paarweise verschiedene EW sind die dazugehörigen Eigenvektoren $u^{(1)} \dots u^{(n)}$ linear unabhängig.

Eigenbasis: Eine Basis von Eigenvektoren einer Matrix A

Sie existiert, falls die Summe der geometrischen Vielfachheiten einer nxn Matrix gleich n ist.

Dies ist so, wenn für jeden Eigenwert die geometrische Vielfachheit gleich der algebraischen Vielfachheit ist (-> halbeinfache Matrix)

→ Summe der lin. unabhängige EV = Summe der geometrischen Vielfachheiten

Eine quadratische Matrix heisst

einfach: für jeden EW ist die algebr. VFH = 1 (u. gem. VFH = 1)

halbeinfach: für jeden EW ist die algebr. VFH = geom. VFH

diagonalisiertbar, falls es eine reguläre Matrix T gibt, so dass die ähnliche Matrix $D = T^{-1} A T$ eine Diagonalmatrix ist.

Satz 7.6: Für jede quadratische Matrix ist äquivalent:

- i) Die Matrix A ist halbeinfach.
- ii) Die Matrix A besitzt eine Eigenbasis.
- iii) Die Matrix A ist diagonalisierbar.

Folgerungen:

- Bilden $u^{(1)},\ldots,u^{(n)}$ eine Eigenbasis zu A, dann diagonalisiert $T=(u^{(1)},\ldots,u^{(n)})$ die Matrix: $D=T^{-1}$ A T ist diagonal. In der Diagonalen von D stehen die Eigenwerte von A.
- i) Umgekehrt: Falls es eine reguläre Matrix T und eine Diagonalmatrix D gibt, s.d. $D = T^{-1} A T$, dann bilden die Spalten von T eine Eigenbasis zu A. In der Diagonalen von D stehen die Eigenwerte von A.

Satz 7.7, 7.8 : reelle, symmetrische Matrizen

- i) Alle Eigenwerte von A sind reell.
- ii) Eigenvektoren zu verschiedenen Eigenwerten stehen senkrecht aufeinander.
- iii) Die Matrix A ist halbeinfach (und somit diagonalisierbar).
- iv) Es gibt eine orthonormale Eigenbasis zu A.
- v) Es gibt eine orthogonale Matrix T, sodass die Matrix $D = T^{-1} A T$ diagonal ist. In der Diagonalen stehen die Eigenwerte von A. Die Spalten von T sind die entsprechenden Eigenvektoren der Matrix A.

<u>Anwendungen d. Eigenwertproblems</u>

Berechnung von $y = A^k x$

Eigenwertproblem von A lösen -> Eigenvektoren $u^{(1)}, \dots, u^{(n)}$

$$T = \left(u^{(1)}, \dots, u^{(n)} \right)$$

$$D = T^{-1} A T = diag(\lambda_1, ..., \lambda_n)$$
 (T⁻¹ nicht berechnen!)

- $A^k = T D^k T^{-1}$
- Lineares GS Tz = x nach z auflösen.
- D^k berechnen (einzelne Stellen hoch k), danach $\omega := D^k z$
- Berechne $v = T \omega$ 5.

Bemerkung: Falls T orthogonal ($T^{-1} = T^T$), kann A^k direkt berechnet werden!

Matrixexponentialfunktion

Für n x n Matrix A:

$$e^A := I_n + A + \frac{1}{2!} A^2 + \frac{1}{3!} A^3 + \dots$$

Für Diagonalmatrix D:

$$e^{D} = diag(e^{\lambda_1}, ..., e^{\lambda_n})$$

Für halbeinfache Matrix A:

$$e^A = T e^D T^{-1}$$

Anmerkung: $e^A e^B = e^{A+B} \Leftrightarrow AB = BA$

Lösen von Differenzialgleichungen mittels Matrixexponentialfunktion:

$$\dot{y}(t) = A y(t)$$

$$\dot{y}(t) = A y(t) \qquad , \quad y(t) = e^{tA} y^0$$

Berechnung:
$$y(t) = e^{tA} y^0 = T e^{tD} T^{-1} y^0$$

Löse

$$z^0 = T^{-1} y^0 \rightarrow T z^0 = y^0$$
 einsetzen und auflösen

Normalformen

Möglichst einfache Form, sodass Abbildung gut ersichtlich

Normalform einer quadratischen Matrix

Satz 9.1: Ähnlichkeit

- Jede halbeinfache Matrix A ist ähnlich zu einer Diagonalmatrix D. $(D = T^{-1} A T)$: in D stehen die Eigenwerte von A: die Transformationsmatrix T enthält in den Spalten eine Eigenbasis zu A)
- Jede reelle symmetrische Matrix A ist orthogonal-ähnlich zu einer Diagonalmatrix D (als Basisvektoren kann ein Orthonormalsystem gewählt werden).
- iii) Jede quadratische Matrix A ist ähnlich zu einer Rechtsdreiecksmatrix R. (In den Diagonalen von R stehen die Eigenwerte von A).

Satz 9.2

i) Jede reelle halbeinfache n x n-Matrix A ist ähnlich zu einer reellen

Blockdiagonalmatrix

$$\tilde{D} = \begin{pmatrix} \tilde{D}_{11} & & 0 \\ & \tilde{D}_{22} & \\ & & \ddots & \\ 0 & & \tilde{D}_{kk} \end{pmatrix}$$

mit Matrizen \widetilde{D}_{ij} der Ordnung 1 (reeller Eigenwert) oder Ordnung 2 (komplexer Eigenwerte $a_i + i b_i$) in der Form

$$\tilde{D}_{kk} = \begin{pmatrix} a_j & b_j \\ -b_j & a_j \end{pmatrix}$$

Die reelle Transformationsmatrix \tilde{T} ($\tilde{D} = \tilde{T}^{-1} A \tilde{T}$) erhält man, indem man in T jedes konjugiert komplexe Eigenvektorpaar durch ihre Real- und Imaginärteile ersetzt ($v^{(k)} + i w^{(k)}$).

ii) Jede reelle n x n-Matrix A ist ähnlich zu einer reellen oberen **Blocksdreiecksmatrix**

$$\tilde{R} = \begin{pmatrix} \tilde{R}_{11} & & * \\ & \tilde{R}_{22} & & \\ & & \ddots & \\ 0 & & & \tilde{R}_{kk} \end{pmatrix}$$

mit Matrizen \tilde{R}_{jj} der Ordnung 1 (reeller Eigenwert) oder Ordnung 2 (komplexer Eigenwerte $a_j \pm i \ b_j$) in der Form $\tilde{R}_{kk} = \begin{pmatrix} a_j & b_j \\ -b_i & a_i \end{pmatrix}$

Satz 9.3: Satz von Schur

Zu jeder reellen n x n-Matrix A existiert eine orthogonale Matrix U, so dass $\tilde{R}\coloneqq U^TA\ U$ eine reelle obere Blockdreiecksmatrix ist:

$$\widetilde{R} = \begin{pmatrix} \widetilde{R}_{11} & * \\ & \ddots & \\ 0 & & \widetilde{R}_{kk} \end{pmatrix}$$

Die Matrizen \tilde{R}_{jj} der Ordnung 1 sind reelle Eigenwerte von A. Die 2. Ordnung haben als Eigenwerte ein konjugiert komplexes Eigenwertpaar von A.

<u>Bemerkung:</u> Hat A nur reelle Eigenwerte, so ist A orthogonal-ähnlich zu einer oberen Dreiecksmatrix.

<u>Definition:</u> Eine quadratische Matrix H heisst *obere Hessenbergmatrix*,

Satz 9.5: Zu jeder reellen n x n-Matrix A existiert eine orthogonale Matrix U, so dass $H:=U^T A U$ eine obere Hessenbergmatrix ist. U kann als Produkt von $\frac{1}{2}(n-1)(n-2)$ Givensrotationen dargestellt werden.

Singulärwertzerlegung: Normalform einer allgemeinen m x n- Matrix

Satz 9.6 : Singulärwertzerlegung mit S_i als Singulärwerte

A: mxn Rangr, reel

U: $m \times m$ orthogonal $A = U S V^T$

V: nxn orthogonal

S: mxn

Die Matrix S hat Diagonalgestalt:
$$S = \begin{cases} \begin{pmatrix} \tilde{S} \\ -- \\ 0 \end{pmatrix}, & \text{falls } m \geq n \\ (\tilde{S}|0), & \text{falls } m \leq n \end{cases}$$

$$\operatorname{mit} \ \hat{S} = \operatorname{diag} \left(s_1, s_2, \dots, s_r, s_{r+1}, \dots, s_p \right), \ p := \min(m, n)$$

i)
$$s_1 = ||A||_2, s_1 \ge s_2 \ge s_r \ge 0, s_{r+1} = \cdots = s_p = 0$$

ii) Die Zahlen
$$s_i^2$$
 sind die Eigenwerte von $\begin{cases} A^T A & m \geq n \\ A A^T & m \leq n \end{cases}$

iii) Für die Spalten $u^{(i)}$, $i=1,\ldots,m$ von U und die Spalten $v^{(i)}$, $i=1,\ldots,n$ von V gilt:

$$Av^{(i)} = s_i u^{(i)}, \qquad A^T u^{(i)} = s_i v^{(i)}$$
 $i = 1, ..., p$

$$m < n : Av^{(i)} = 0$$
, $i = p + 1, ..., n$
 $m > n : A^{T}u^{(i)} = 0$, $i = p + 1, ..., m$

Satz 9.7: Für jede n x n-Matrix A von Rang r gilt:

i)
$$Kern A = span \{ v^{(r+1)}, ..., v^{(n)} \}$$

Bild
$$A = span \{ u^{(1)}, ..., u^{(r)} \}$$

ii)
$$Kern A^T = span \{ u^{(r+1)}, ..., u^{(m)} \}$$

Bild
$$A^{T} = span \{ v^{(1)}, \dots, v^{(r)} \}$$

Lineare Differentialgleichungen 1. Ordnung

Sei ein System von Differentialgleichungen 1. Ordnung mit den Anfangsbedingungen y(0) gegeben:

Und seien die Koeffizienten a_{ij} so gewählt, dass sie eine diagonalisierbare Matrix $A \in \mathbb{R}^{n \times n}$ bilden:

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}.$$

1. Das LGS zu einer Matrixgleichung y'(x) = A * y(t) umformen mit:

$$\dot{y}(t) \coloneqq \begin{bmatrix} \dot{y}_1(t) \\ \vdots \\ \dot{y}_n(t) \end{bmatrix}, \qquad y(t) \coloneqq \begin{bmatrix} y_1(t) \\ \vdots \\ y_n(t) \end{bmatrix}.$$

- 2. Eigenwertproblem von A lösen und zugehörige Eigenvektoren $u^{(1)}, \dots, u^{(n)}$ bestimmen
- 3. $T = (u^{(1)}, ..., u^{(n)})$ bestimmen
- 4. Mit y(t) = T x(t) wird die Abbildung in neue Koordinaten transformiert. Wegen

$$\dot{y}(t) = Ay(t), \qquad T\dot{x}(t) = ATx(t)$$

kann x(t) einfach bestimmt werden, da T^{-1} A T die Diagonalmatrix $D = diag(\lambda_1, ..., \lambda_n)$ ist

$$\dot{x}(t) = T^{-1}ATx(t) = Dx(t),$$

$$\dot{x}_i(t) = \lambda_i x_i(t) \quad \text{mit} \quad i = 1, \dots, n.$$

Wichtig: T^{-1} A T nicht berechnen! Die allgemeinen Lösungen sind

$$x_i(t) = c_i e^{\lambda_i t}.$$

5. x(t) zu y(t) zurück transformieren mit

$$y(t) = Tx(t) = c_1 e^{\lambda_1 t} u^{(1)} + \dots + c_n e^{\lambda_n t} u^{(n)}$$

6. Die Parameter $c = (c_1, ..., c_n)^T$ mit Tc = y(0) bestimmen.

Lineare Differentialgleichungen 2. Ordnung

Die Berechnung erfolgt analog zu DGL 1. Ordnung. Die allgemeinen Lösungen sind mit $\omega_i^2 = -\lambda_i$

$$x_i(t) = a_i \cos(\omega_i t) + b_i \sin(\omega_i t).$$

8 MATLAB

rank(A)	Rang der Matrix A		
<pre>det(A)</pre>	Determinante der Matrix A		
[L,R,P] = lu(A)	LR-Zerlegung der Matrix A		
[Q,R] = qr(A)	QR-Zerlegung der Matrix A		
x=A\b	löst die Gleichung $Ax = b$ nach x auf		
norm(A)	Euklidische Norm der Matrix A		
expm(A)	berechnet die Matrix e^A		
[T,D] = eig(A)	Eigenwertzerlegung der Matrix A		
[U,S,V] = svd(A)	Singulärwertzerlegung der Matrix A		

Matrix definieren

$$A = [0,2;3,-4;0.5,sqrt(2)] = \begin{bmatrix} 0 & 2\\ 3 & -4\\ 0.5 & \sqrt{2} \end{bmatrix}$$
$$= [a^{(1)},...,a^{(n)}]; A(3,1) = 0.5$$
$$a^{(1)} = A[:,1]$$

Inverse: inv(A)
Transponierte: transpose(A)

Grad	Rad	$\sin \varphi$	$\cos \varphi$	$\tan \varphi$
00	0	0	1	0
30°	$\frac{1}{6}\pi$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45°	$\frac{1}{4}\pi$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{1}{3}\pi$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{1}{2}\pi$	1	0	
120°	$\frac{2}{3}\pi$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$
135°	$\frac{3}{4}\pi$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1
150°	$\frac{5}{6}\pi$	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$
180°	π	0	-1	0