
Intro to ML Summary 25.07.2019

1. Regression

Residual: quantifies goodness of fit

𝑅̂(𝑤) = ∑ 𝑟𝑖
2

𝑖
= ∑ (𝑦𝑖 − 𝑤𝑇𝑥𝑖)2

𝑖

Least-squares: solve direct or iteratively

𝑤∗ = arg min ∑(𝑦𝑖 − 𝑤𝑇𝑥𝑖)2

Closed form: 𝑤∗ = (𝑋𝑇𝑋)−1𝑋𝑇𝑦

Convex: local minima is global minima

𝑓(𝜆𝑥 + (1 − 𝜆)𝑥′) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑥′)

Gradient decent: start at any 𝑤0 ∈ ℝ𝑑

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡 𝛻 𝑅̂(𝑤𝑡)

“Empirical risk”: ∇ 𝑅̂(𝑤) = −2 ∑ 𝑟𝑖 𝑥𝑖
𝑇

𝑖

Line search: 𝜂𝑡 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛 𝑅̂(𝑤𝑡 − 𝜂 ∇ 𝑅̂)

Bold driver: increase step size if less risk

2. Model selection & validation

Expected error / “true risk”

𝑅(𝑤) = ∫ 𝑃(𝑥, 𝑦) (𝑦 − 𝑤𝑇𝑥)2 𝑑𝑥𝑑𝑦

 = 𝐸𝑥,𝑦[(𝑦 − 𝑤𝑇𝑥)2]

𝑅̂𝐷(𝑤) =
1

|𝐷|
 ∑(𝑦𝑖 − 𝑤𝑇𝑥𝑖)2

Ridge regression: regularize weights

min
𝑤

1

𝑛
 ∑(𝑦𝑖 − 𝑤𝑇𝑥𝑖)2 + 𝜆 ‖𝑤‖2

𝑤̂ = (𝑋𝑇𝑋 + 𝜆 𝐼)−1 𝑋𝑇 𝑦

Standardization: 𝜇 = 0, 𝜎2 = 1

𝑥̃𝑖,𝑗 = (𝑥𝑖 − 𝜇𝑗)/𝜎𝑗

3. Classification

0/1 loss: 𝑙0 1⁄ (𝑥𝑖) = [𝑦𝑖 ≠ 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥𝑖)]

Perceptron: 𝑙𝑝(𝑥𝑖) = max(0, −𝑦𝑖𝑤𝑇𝑥𝑖)

Hinge loss: 𝑙ℎ(𝑤) = max(0, 1 − 𝑦 𝑤𝑇𝑥)

Stochastic Gradient Decent: few points

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡 ∇ 𝑙(𝑤𝑡; 𝑥′, 𝑦′)

Mini-batch: avg over batch of points

(reduces variance, allows parallelization)

Perceptron: SGD with 𝑙𝑝 and 𝜂 = 1

Support Vector Machine: max. margin

Use 𝑙ℎ to enforce margin + regularize

arg min
1

𝑛
 ∑ max(0,1 − 𝑦 𝑤𝑇𝑥) + 𝜆‖𝑤‖2

2

4. Feature selection

Greedy forward select: choose best

feature and add 1 if it decreases loss

Greedy backward: remove if advantage

Lasso: use 𝑙1 for sparsity regularization,

force weights to 0 to simplify model

min
1

𝑛
 ∑(𝑦𝑖 − 𝑤𝑇𝑥)2 + 𝜆‖𝑤‖1

5. Kernels

Ansatz: 𝑤̂ = ∑ 𝛼𝑖 𝑦𝑖 𝑥𝑖

Kernels calc inner products efficiently:

arg min
1

𝑛
 ∑ max (0, − ∑ 𝛼𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑥𝑗
𝑗

)
𝑖

𝑘(𝑥, 𝑥′) = 𝜙(𝑥)𝑇𝜙(𝑥′) for 𝑥 → 𝜙(𝑥)

Kernel trick: inner product → kernel

Kernelized Perceptron: for any (𝑥𝑖, 𝑦𝑖)

𝑦̂ = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑗𝑦𝑗𝑘(𝑥𝑗, 𝑥𝑖)
𝑗

)

𝑦̂ ≠ 𝑦𝑖: 𝛼𝑖 = 𝛼𝑖 + 𝜂𝑡 , 𝑒𝑙𝑠𝑒 𝛼𝑡+1 = 𝛼𝑡

Kernel properties:

i) must be symmetric: 𝑘(𝑥, 𝑦) = 𝑘(𝑦, 𝑥)

ii) kernel matrix 𝐾 must be positive semi-

 definite: 𝑥𝑇𝐾 𝑥 ≥ 0 ↔ 𝜆𝑖 ≥ 0 ∀ 𝐸𝑉𝑠

Can always construct a feature map:

𝐾 = 𝑈 𝐷 𝑈𝑇 = 𝜙𝑇𝜙 , 𝜙𝑇 = 𝑈 𝐷1/2

𝑘(𝑖, 𝑗) = 𝐾𝑖,𝑗 = 𝜙𝑖
𝑇 𝜙𝑗 , 𝜙: 𝑖 → 𝜙𝑖

Linear: 𝑘(𝑥, 𝑥′) = 𝑥𝑇𝑥′

Polynomial: 𝑘(𝑥, 𝑥′) = (𝑥𝑇𝑥′ + 1)𝑑

Gaussian: 𝑘 = exp (− ‖𝑥 − 𝑥′‖2
2

2ℎ2⁄)

Laplacian: 𝑘 = exp (−‖𝑥 − 𝑥′‖1 / ℎ)

Combine: 𝑘1 + 𝑘2, 𝑘1 ∗ 𝑘2, 𝑐 ∗ 𝑘1 (𝑐 > 0)

use prev. knowledge, e.g. linear + Gaussian

K-Nearest neighbour

𝑦 = 𝑠𝑖𝑔𝑛 (∑ 𝑦𝑖[𝑥𝑖 𝑎𝑚𝑜𝑛𝑔 𝑘 𝑁𝑁 𝑜𝑓 𝑥])

Kernelized Perceptron + SVM

arg min
1

𝑛
 ∑ max(0, − 𝑦𝑖𝛼𝑇𝑘𝑖)

arg min
1

𝑛
 ∑ max(0,1 − 𝑦𝑖𝛼𝑇𝑘𝑖)

+ 𝜆𝛼𝑇𝐷𝑦𝐾𝐷𝑦𝛼

where 𝑘𝑖 = [𝑦1𝑘(𝑥𝑖 , 𝑥1), … , 𝑦𝑛𝑘(𝑥𝑖, 𝑥𝑛)]

Kernelized Linear Regression (KLR)

𝛼̂ = arg min
1

𝑛
 ‖𝛼𝑇𝐾 − 𝑦‖2

2 + 𝜆𝛼𝑇𝐾𝛼

Closed-form: 𝛼̂ = (𝐾 + 𝑛𝜆𝐼)−1𝑦

6. Class imbalance

Replace cost: 𝑙𝐶𝑆(𝑤, 𝑥, 𝑦) = 𝑐𝑦 𝑙(𝑤, 𝑥, 𝑦)

Accuracy:
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=

𝑇𝑃 + 𝑇𝑁

𝑛

Precision:
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 , Recall:

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F1 score:
2 𝑇𝑃

2 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2
1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 +

1

𝑟𝑒𝑐𝑎𝑙𝑙

True Positive:
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 , False Positive:

𝐹𝑃

𝑇𝑁 + 𝐹𝑃

Multi-class Hinge Loss: train many 𝑤′𝑠

𝑙𝑀𝐶 = max (0, 1 + 𝑚𝑎𝑥 𝑤(𝑗)𝑇𝑥 − 𝑤(𝑦)𝑇𝑥)

7. Neural nets

Sigmoid:
1

1+exp(−𝑧)
 , Tanh:

exp(𝑧) − exp(−𝑧)

exp(𝑧) + exp(−𝑧)

ReLu: max(𝑧, 0) , Leaky ReLu: 𝛼 𝑧, 𝑧 < 0

Forward-propagation

𝑧(𝑙) = 𝑊(𝑙)𝑣(𝑙−1) , 𝑣(𝑙) = 𝜑(𝑧(𝑙))

Back propagation

Error: 𝛿(𝑙) = 𝜑′(𝑧(𝑙)) ∗ (𝑊(𝑙+1)𝑇𝛿(𝑙+1))

Gradient: ∇𝑊(𝑙) 𝑙(𝑊, 𝑥, 𝑦) = 𝛿(𝑙)𝑣(𝑙−1)𝑇

Momentum

𝑎𝑡+1 = 𝑚 ∗ 𝑎𝑡 + 𝜂𝑡∇𝑤 𝑙(𝑊, 𝑦, 𝑥)

𝑊𝑡+1 = 𝑊𝑡 − 𝑎𝑡+1

8. Clustering

k-means: linear decision boundaries

𝑅̂(𝜇) = ∑ min
j

‖𝑥𝑖 − 𝜇𝑗‖
2

2

𝑖

Lloyd’s heuristic:

𝑧𝑖
(𝑡)

= arg min
𝑗

‖𝑥𝑖 − 𝜇𝑗
(𝑡−1)

‖
2

𝜇𝑗
(𝑡)

=
1

𝑛𝑗
 ∑ 𝑥𝑖

𝑧
𝑖
(𝑡)

=𝑗

9. Dimension reduction

Linear dimension reduction: ‖𝑤‖2 = 1

(𝑤∗, 𝑧∗) = arg min ∑‖𝑧𝑖𝑤 − 𝑥𝑖‖2
2

Principal Component Analysis: k-dim.

𝑧𝑖 = 𝑊𝑇𝑥𝑖 , 𝑊 = (𝑣1| … |𝑣𝑘)

𝛴 = ∑ 𝜆𝑖 𝑣𝑖 𝑣𝑖
𝑇 =

1

𝑛
 ∑ 𝑥𝑖 𝑥𝑖

𝑇 , 𝜆𝑖 ≥ 0

Can also be obtained using SVD:

𝑋 = 𝑈 𝑆 𝑉𝑇 → 𝑊 = (𝑣1| … |𝑣𝑘)

Kernel PCA

max
𝛼

 𝛼𝑇𝐾𝑇𝐾𝛼 𝑠. 𝑡. 𝛼𝑇𝐾𝛼 = 1

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑗
𝑇 𝑥𝑖 , 𝐾 = (𝑘1| … |𝑘𝑛)

𝛼(𝑖) = arg max 𝛼𝑇𝐾𝑇𝐾𝛼 = 𝑣𝑖/√𝜆𝑖

𝑧𝑖 = ∑ 𝛼𝑗
(𝑖)

 𝑘(𝑥, 𝑥𝑗) ∈ ℝ𝑘

Autoencoder

𝑓(𝑥; 𝜃) = 𝑓2(𝑓1(𝑥; 𝜃1); 𝜃2)

10. Probabilistic modelling

Prediction risk: should be minimized

𝑅(ℎ) = ∫ 𝑃(𝑥, 𝑦) 𝑙(𝑦, ℎ) = 𝐸𝑥,𝑦[𝑙(𝑦, ℎ)]

Maximum Likelihood Estimation (MLE)

𝜃∗ = arg max
𝜃

𝑃̂(𝑦1, … , 𝑦𝑛|𝑥1, … , 𝑥𝑛, 𝜃)

Lin. Gaussian: arg min ∑ (𝑦𝑖 − 𝑤𝑇𝑥𝑖)2

Maximum A Posteriori (MAP)

wMAP = arg max
𝑤

𝑃(𝑤|𝐷) , 𝑃(𝑤) 𝑘𝑛𝑜𝑤𝑛

 = arg max
𝑤

∏ 𝑃(𝑦𝑖|𝑥𝑖, 𝑤)𝑃(𝑤)

 = arg min
𝑤

∑ 𝑙 (𝑤, 𝐷) − log 𝑃(𝑤)

11. Logistic regression

MLE for logistic regression (classification)

𝑙(𝑤) = log(1 + 𝑒𝑥𝑝(−𝑦𝑤𝑇𝑥))

where assume Bernoulli noise: 𝑃(𝑦|𝑥, 𝑤)

= 𝐵𝑒𝑟(𝑦, 𝜎(𝑤𝑇𝑥)) =
1

1 + exp(−𝑦𝑤𝑇𝑥)

𝑅̂ = ∑ log(1 + 𝑒𝑥𝑝(−𝑦𝑖 𝑤𝑇𝑥𝑖))
𝑖

+ 𝑟𝑒𝑔

SGD for L2-reg. logistic regression

Update: 𝑃(𝑌 ≠ 𝑦|𝑤, 𝑥) =
1

1+exp(𝑦𝑤𝑇𝑥)

Step: 𝑤 ← 𝑤(1 − 2𝜆𝜂𝑡) + 𝜂𝑡𝑦𝑥𝑃(𝑌 ≠ 𝑦)

Multi-class logistic regression: e.g. NN

𝑃(𝑌 = 𝑖 | 𝑥, 𝑤1, … , 𝑤𝑐) =
exp (𝑤𝑖

𝑇𝑥)

∑ exp(𝑤𝑗
𝑇𝑥)

12. Bayesian decision theory

Min. cost: 𝑎∗ = arg min 𝐸[𝐶(𝑦, 𝑎)|𝑥]

Logistic regression: most likely action

𝑎∗ = arg max 𝑃̂(𝑦 |𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥)

Doubtful logistic regression: “better ask”

𝐶 {
[𝑦 ≠ 𝑎], 𝑎 ∈ {±1}

𝑐 , 𝑎 = 𝐷
 , 𝑎∗ {

𝑦 , 𝑃(𝑦|𝑥) ≥ 1 − 𝑐
𝐷 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Least-squares regression

𝐶(𝑦, 𝑎) = (𝑦 − 𝑎)2 , 𝑎∗ = 𝑤𝑇𝑥

13. Generative modelling

Discriminative models: learn 𝑃(𝑦|𝑥)

Generative models: learn 𝑃(𝑦, 𝑥)

1. Estimate prior on label: 𝑃(𝑦)

2. Conditional dist. per class: 𝑃(𝑥 | 𝑦)

3. Predictive dist: 𝑃(𝑦 |𝑥) ≈ 𝑃(𝑦)𝑃(𝑥|𝑦)

 each feature is indep. of other, given y

𝑃(𝑦|𝑥) =
1

𝑍
 𝑃(𝑦) 𝑃(𝑥|𝑦) =

𝑃(𝑥, 𝑦)

𝑃(𝑥)

𝑍 = ∑ 𝑃(𝑦) 𝑃(𝑥|𝑦)
𝑦

= 𝑃(𝑥)

To maximize: 𝑦̂ = arg max 𝑃(𝑦′ | 𝑥)

Gaussian Naïve Bayes Classifier

𝑃(𝑌 = 𝑦) = 𝑝𝑦 = 𝐶𝑜𝑢𝑛𝑡(𝑌 = 𝑦)/𝑛

𝑃(𝑥|𝑦) = 𝒩(𝑥𝑖; 𝜇𝑦,𝑖, 𝜎𝑦,𝑖
2)

𝜇𝑦,𝑖 =
∑ 𝑥𝑗,𝑖𝑦𝑗=𝑦

𝐶𝑜𝑢𝑛𝑡(𝑦)
, 𝜎𝑦,𝑖

2 =
∑ (𝑥𝑗,𝑖 − 𝜇𝑗,𝑖)

2
𝑦𝑗=𝑦

𝐶𝑜𝑢𝑛𝑡(𝑌 = 𝑦)

𝑦 = arg max
𝑦′

𝑃(𝑦′) ∏ 𝑃(𝑥𝑖|𝑦′)
𝑖

Shared variance: linear class boundary

𝑦 = 𝑠𝑖𝑔𝑛(𝑓(𝑥)), 𝑓(𝑥) = 𝑤𝑇𝑥 + 𝜔0

Discriminant function

𝑓(𝑥) = log
𝑃(𝑌 = 1 | 𝑥)

𝑃(𝑌 = −1 | 𝑥)

Gaussian Bayes Classifier

As features no more independent, we

require the empirical covariance matrix

𝛴𝑦 =
1

𝐶𝑜𝑢𝑛𝑡(𝑦)
∑(𝑥𝑖 − 𝜇𝑦)(𝑥𝑖 − 𝜇𝑦)

𝑇

Categorical Naïve Bayes Classifier

𝜃𝑐|𝑦 = 𝑃(𝑋𝑖 = 𝑐|𝑦) =
𝐶(𝑋𝑖 = 𝑐, 𝑌 = 𝑦)

𝐶𝑜𝑢𝑛𝑡(𝑌 = 𝑦)

14. Missing data

Gaussian Mixture Models (GMM)

try to guess label by modelling data

𝑃(𝑥 | 𝜃) = ∑ 𝑤𝑖 𝒩(𝑥; 𝜇𝑖 , 𝛴𝑖)
𝑖

𝑤𝑖 ≥ 0 , ∑ 𝑤𝑖
𝑖

= 1

Represent data as clusters of Gaussians:

𝐿 = − ∑ log ∑ 𝑤𝑗 𝒩(𝑥𝑖 |𝜇𝑗 , 𝛴𝑗)
𝑗𝑖

Estimating 𝑃(𝑥) permits outlier detection

Gaussian Mixture Classifier (GMC)

𝑃(𝑦|𝑥) =
𝑃(𝑦)

𝑃(𝑥)
∑ 𝑤𝑗

(𝑦)
𝒩 (𝑥; 𝜇𝑗

(𝑦)
, 𝛴𝑗

(𝑦)
)

𝑗

Hard-EM: force data point choose class

E-step (expectation): predict most likely

𝑧𝑖
(𝑡)

= arg max
𝑧

𝑃(𝑧|𝜃(𝑡−1))𝑃(𝑥𝑖|𝑧, 𝜃(𝑡−1))

𝐷(𝑡) = {(𝑥1, 𝑧1
(𝑡)

) , … , (𝑥𝑛, 𝑧𝑛
(𝑡)

)}

M-step (maximization): compute MLE

𝜃(𝑡) = arg max
𝜃

𝑃(𝐷(𝑡)|𝜃)

Soft-EM: assign “responsibilities”

𝛾𝑗(𝑥) = 𝑃(𝑍 = 𝑗|𝑥, 𝜃) =
𝑤𝑗 𝑃(𝑥|𝜇𝑗, 𝛴𝑗)

∑ 𝑤𝑙𝑃(𝑥|𝜇𝑙 , 𝛴𝑙)𝑙

𝑤𝑗
(𝑡)

=
1

𝑛
∑ 𝛾𝑗

(𝑡)
(𝑥𝑖), 𝜇𝑗

(𝑡)
=

∑ 𝛾𝑗
(𝑡)(𝑥𝑖)𝑥𝑖

∑ 𝛾𝑗
(𝑡)(𝑥𝑖)

𝛴𝑗
(𝑡)

=
∑ 𝛾𝑗

(𝑡)
(𝑥𝑖) (𝑥𝑖 − 𝜇𝑗

(𝑡)
) (𝑥𝑖 − 𝜇𝑗

(𝑡)
)

𝑇

∑ 𝛾𝑗
(𝑡)

(𝑥𝑖)

Choose k using cross-validation, avoid 𝜎 ≈ 0

Semi-supervised learning

For labelled data: 𝛾𝑗(𝑥𝑖) = [𝑗 = 𝑦𝑗]

M-step ≅ GBC with weighted data

Generative Adversarial Network

Use discriminative learning to train

generative model (hard to distinguish)

- Generator G vs Discriminator D

Summary slides

General terminology

Regression: predict real-valued labels

Representation: should be

- independent of length of document

- include ordering (e.g. pairs of words)

- aggregate similar words (“embedding”)

Overfitting: learn training noise as well

- inefficient, no generalizable solution

Unsupervised learning: no given output

- clustering, dim. reduction, generative

- common representation of data sets

- identification of latent variables

- exploratory data analysis, anomalies

- feature learning / embedding

Transfer learning: learn on one domain,

test / apply knowledge on another one

Reinforcement learning: interact with an

unknown environment to learn

Homogeneous representation

𝑤̃ = [𝑤1 … 𝑤𝑑 𝑤0] , 𝑥̃ = [𝑥1 … 𝑥𝑑 1]𝑇

Always test on separate testing set!

Else underestimate the prediction error

(estimated error ≤ expected error):

𝐸[𝑅̂𝐷(𝑤𝐷)] ≤ 𝐸[𝑅(𝑤𝐷)]

K-fold cross-validation: reduce variance

1. partition data into k folds

2. Test on (k-1) folds, evaluate on last

Surrogate loss: replace original function,

as better computationally behaving (e.g.

differentiable at all places); validate with

the loss you actually care about!

Stochastic gradient decent: evaluate

gradient only at few points for efficiency

Feature selection: reduce features for

- interpretability (“understand” class)

- generalization (simpler, no overfitting)

- computation (less storage)

Nonlinear classification boundaries: use

non-linear transformation of feature

vectors and linear classification

Kernels: allow to efficiently compute on

high-dimensional feature vector without

explicitly calculating the transformation;

as don’t explore high-dimensional space

(only based on data), no overfitting

Kernelized perceptron: similar to k-NN,

but with optimized weights 𝛼𝑖; can

capture global trends (sparse 𝛼𝑖′𝑠) and

only depend on “wrongly classified” data

Non-parametric learning: number of

parameters = number of data points

Class-imbalance due to small sample set

- subsampling: remove majority samples

- upsampling: repeat minority samples

- cost-sensitive classification: 𝑙𝐶𝑆 = 𝑐𝑦 𝑙

Receiver Operator Curve (ROC): True

Positive Rate (y) / False Positive Rate (x)

- Area under Curve (AUC) of ROC

One-vs-all (OvA): train one classifier per

class, one with highest confidence wins

(requires unit length on weights to

remain comparable, else cannot)

- inherently imbalanced data

One-vs-one (OvO): train one classifier for

each pair of classes, class with highest

number of positive prediction wins

Error correcting output codes: try to

estimate “label” of class as bit string

Artificial Neural Network (ANN):

nonlinear functions which are nested

compositions of (variable) linear

functions composed with (fixed) non-

linearities; use recursively inside

𝑓(𝑥, 𝑤, 𝜃) = ∑ 𝜔𝑗 φ(θj
𝑇 𝑥)

𝑗

Vanishing Gradient Problem: activation

functions lack gradient away from origin

Forward propagation:

for evaluation from input to output

Backward propagation:

for optimization from output to input

Universal Approximation Theorem: “can

approximate any piece-wise linear fct

with sufficient neurons” using sigmoids

Softmax: used for multi-class

classification at output of NN

𝜎𝑖 =
𝑒𝛾𝑖

∑ 𝑒𝛾𝑗
𝑗

Weight initialization: keep variance of

weights approximately constant using

Glorot / He initialization

Learning rate: guarantee convergence by

reducing step size after a while, e.g.

𝜂𝑡 = min(0.1, 100 𝑡⁄)

Overfitting for NNs can be prevented

- early stopping: don’t converge fully, but

 stop after validation error increases

- regularization: add penalty for weights

- dropout: don’t train all weights always

- batch-normalization: ensure that inputs

 of hidden layers are normalized

Augmentation: create artificial samples

by using invariant transformation

Convolutional Neural Network:

specialized applications where each

hidden unit depends only on “close-by”

input, weights identical across one layer

Pooling layer: aggregate inputs by e.g.

doing average or max pooling over patch

Convex optimization: For kernels, can

never get stuck in local minima as convex

problem; ANN & k-means non-convex!

Unsupervised learning: “learning

without labels”, learn functional

relationship, exploratory data analysis

- clustering: unsupervised classification

- dimension reduction: unsup. Regression

Clustering

- hierarchical: build a tree of clusters

- partitional: based on partition cost

- model-based: maintain cluster model

K-means: vulnerable to over- or

underrepresent clusters by random

- K-Means++: pick likelihood increases

with distance to existing centers

𝑝 =
1

𝑧
 min‖𝑥𝑖 − 𝜇𝑒‖2

Elbow method: diminishing return with

increased complexity, hence introduce

cost for additional complexity to prevent

ever-decreasing loss functions

Embedding: low-dimensional

representation of complex feature vector

Principal Component Analysis: project

feature vector onto k largest

eigenvectors to compress with least loss

Spectral clustering: Kernel k-means

- apply k-means in the feature space

induced by the kernel k

Non-linear feature maps

- can discover non-linear feature maps in

closed form using kernel PCA

- Kernel PCA requires data to create PCA

Autoencoder: try to losslessly compress

(“encode”) and decompress (“decode”)

- number of output = number of inputs,

 but hidden layers are usually smaller

- “Supervised” by using original data

- equivalent to PCA for 𝜑(𝑧) = 𝑧

- can be used to denoise

 (capacity too small to capture noise)

Bias Variance trade-off: more complex

functions have less bias but high variance

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 = 𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑁𝑜𝑖𝑠𝑒

Bias: excess risk knowing P(X,Y), inf. data

Variance: risk due to using limited data

Noise: risk incurred by optimal model

MAP: explicitly express assumptions on

your parameter distribution with a prior

- can be seen as regularization on MLE

Prior: can regard prior as a regularization

- L2: Gaussian prior

- L1: Laplacian prior

Asymmetric loss: can punish false

positives more than false negatives

Active learning: request labels for the

data you are most uncertain about

- called “uncertainty sampling”

- violates i.i.d. assumption

Discriminant function: for GNB, same

predictions as logistic regression

𝑦 = 𝑠𝑖𝑔𝑛 (𝑙𝑜𝑔
𝑃(𝑌 = 1|𝑥)

𝑃(𝑌 = −1|𝑥)
)

GNB vs GBC

- GNB can suffer from overconfidence if

features are not independent

- GBC requires quadratic complexity in d

Linear Discriminant analysis

projection to 1-dim subspace that

maximizes ratio of between-class /

within-class variance

- LDA: little within, max between

- PCA: maximize all variance

Outlier detection

Generative models allow outlier

detection by defining 𝑃(𝑥) ≤ 𝜏;

however, are less robust if model

assumptions are not valid

Conjugate distribution: posterior

distribution remains same family as prior

GMM: try to guess latent variable

(clustering), as don’t have the label

- else could directly do MLE / GBC

Formulae

‖𝒙‖𝒑 = (∑ |𝒙𝒊|𝒑
𝒏

𝒊=𝟏
)

𝟏
𝒑

 , 𝒑 ∈ (𝟏, ∞)

〈𝒙, 𝒚〉 ≤ ‖𝒙‖𝒑 ‖𝒚‖𝒒 ,
𝟏

𝒑
+

𝟏

𝒒
= 𝟏

Probability

𝑷(𝑨𝒊 |𝑩) =
𝑷(𝑩 |𝑨𝒊) 𝑷(𝑨𝒊)

∑ 𝑷(𝑩 |𝑨𝒋) 𝑷(𝑨𝒋)

 𝑽𝒂𝒓(𝑿) = 𝑬[(𝑿 − 𝑬[𝑿])𝟐]

= 𝑬[𝑿𝟐] − 𝑬[𝑿]𝟐

Gaussian

𝑵(𝝁, 𝝈𝟐) ~
𝟏

√𝟐𝝅𝝈𝟐
 𝒆𝒙𝒑 (−

(𝒙 − 𝝁)𝟐

𝟐𝝈𝟐)

𝝁𝒋 =
𝟏

𝒏
 ∑ 𝒙𝒊,𝒋

𝒏

𝒊=𝟏

, 𝝈𝒋
𝟐 =

𝟏

𝒏
 ∑(𝒙𝒊,𝒋 − 𝝁𝒋)

𝟐
𝒏

𝒊=𝟏

Empirical covariance matrix

𝜮 =
𝟏

𝒏
 ∑ 𝒙𝒊 𝒙𝒊

𝑻
𝒏

𝒊=𝟏

Bayes rule

𝑷(𝒘|𝒙, 𝒚) =
𝑷(𝒘|𝒙) 𝑷(𝒚| 𝒙, 𝒘)

𝑷(𝒚|𝒙)

Least square loss

𝒍(𝒚, 𝒉) = (𝒀 − 𝒉(𝒙))
𝟐

Poisson distribution

𝑷(𝑿 = 𝒙) =
𝝀𝒙 𝒆−𝝀

𝒙!

KL divergence

𝑲𝑳(𝒑 || 𝒒) = ∑ − 𝒑(𝒙)𝒍𝒐𝒈
𝒑(𝒙)

𝒒(𝒙)

