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1. Regression 

Residual: quantifies goodness of fit 

𝑅̂(𝑤) =  ∑ 𝑟𝑖
2

𝑖
=  ∑ (𝑦𝑖 − 𝑤𝑇𝑥𝑖)2

𝑖
  

Least-squares: solve direct or iteratively 

𝑤∗ = arg min ∑(𝑦𝑖 − 𝑤𝑇𝑥𝑖)2 

Closed form: 𝑤∗ = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 

Convex: local minima is global minima 

𝑓(𝜆𝑥 + (1 − 𝜆)𝑥′) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑥′) 

Gradient decent: start at any 𝑤0 ∈ ℝ𝑑 

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡  𝛻 𝑅̂(𝑤𝑡) 

“Empirical risk”:  ∇ 𝑅̂(𝑤) =  −2 ∑ 𝑟𝑖 𝑥𝑖
𝑇

𝑖  

Line search: 𝜂𝑡 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛 𝑅̂(𝑤𝑡 − 𝜂 ∇ 𝑅̂) 

Bold driver: increase step size if less risk 

2. Model selection & validation 

Expected error / “true risk” 

𝑅(𝑤) =  ∫ 𝑃(𝑥, 𝑦) (𝑦 − 𝑤𝑇𝑥)2 𝑑𝑥𝑑𝑦 

            = 𝐸𝑥,𝑦[(𝑦 − 𝑤𝑇𝑥)2] 

𝑅̂𝐷(𝑤) =
1

|𝐷|
 ∑(𝑦𝑖 − 𝑤𝑇𝑥𝑖)2 

Ridge regression: regularize weights 

min
𝑤

1

𝑛
 ∑(𝑦𝑖 − 𝑤𝑇𝑥𝑖)2 + 𝜆 ‖𝑤‖2 

𝑤̂ = (𝑋𝑇𝑋 + 𝜆 𝐼)−1 𝑋𝑇 𝑦 

Standardization: 𝜇 = 0, 𝜎2 = 1 

𝑥̃𝑖,𝑗 = (𝑥𝑖 − 𝜇𝑗)/𝜎𝑗 

3. Classification 

0/1 loss:    𝑙0 1⁄ (𝑥𝑖) = [𝑦𝑖  ≠ 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥𝑖)] 

Perceptron:  𝑙𝑝(𝑥𝑖) = max(0, −𝑦𝑖𝑤𝑇𝑥𝑖) 

Hinge loss: 𝑙ℎ(𝑤) = max(0, 1 − 𝑦 𝑤𝑇𝑥) 

Stochastic Gradient Decent: few points 

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡  ∇ 𝑙(𝑤𝑡; 𝑥′, 𝑦′) 

Mini-batch: avg over batch of points 

(reduces variance, allows parallelization) 

Perceptron: SGD with 𝑙𝑝 and 𝜂 = 1 

Support Vector Machine: max. margin 

Use 𝑙ℎ to enforce margin + regularize 

arg min
1

𝑛
 ∑ max(0,1 − 𝑦 𝑤𝑇𝑥) + 𝜆‖𝑤‖2

2
 

4. Feature selection 

Greedy forward select: choose best 

feature and add 1 if it decreases loss 

Greedy backward: remove if advantage 

Lasso: use 𝑙1 for sparsity regularization, 

force weights to 0 to simplify model 

min
1

𝑛
 ∑(𝑦𝑖 − 𝑤𝑇𝑥)2 + 𝜆‖𝑤‖1 

5. Kernels 

Ansatz:    𝑤̂ =  ∑ 𝛼𝑖 𝑦𝑖  𝑥𝑖 

Kernels calc inner products efficiently: 

arg min
1

𝑛
 ∑ max (0, − ∑ 𝛼𝑦𝑖𝑦𝑗𝑥𝑖

𝑇𝑥𝑗
𝑗

)
𝑖

 

𝑘(𝑥, 𝑥′) = 𝜙(𝑥)𝑇𝜙(𝑥′)       for 𝑥 → 𝜙(𝑥) 

Kernel trick: inner product → kernel 

Kernelized Perceptron: for any (𝑥𝑖, 𝑦𝑖) 

𝑦̂ = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑗𝑦𝑗𝑘(𝑥𝑗, 𝑥𝑖)
𝑗

) 

𝑦̂  ≠ 𝑦𝑖:  𝛼𝑖 = 𝛼𝑖 + 𝜂𝑡  ,   𝑒𝑙𝑠𝑒 𝛼𝑡+1 = 𝛼𝑡 

Kernel properties: 

i) must be symmetric:   𝑘(𝑥, 𝑦) = 𝑘(𝑦, 𝑥) 

ii) kernel matrix 𝐾 must be positive semi- 

    definite:    𝑥𝑇𝐾 𝑥 ≥ 0 ↔ 𝜆𝑖 ≥ 0 ∀ 𝐸𝑉𝑠 

Can always construct a feature map: 

𝐾 = 𝑈 𝐷 𝑈𝑇 = 𝜙𝑇𝜙 , 𝜙𝑇 = 𝑈 𝐷1/2 

𝑘(𝑖, 𝑗) = 𝐾𝑖,𝑗 = 𝜙𝑖
𝑇 𝜙𝑗 , 𝜙: 𝑖 → 𝜙𝑖   

Linear:  𝑘(𝑥, 𝑥′) = 𝑥𝑇𝑥′ 

Polynomial: 𝑘(𝑥, 𝑥′) = (𝑥𝑇𝑥′ + 1)𝑑 

Gaussian:   𝑘 = exp (− ‖𝑥 − 𝑥′‖2
2

2ℎ2⁄ ) 

Laplacian:   𝑘 = exp (−‖𝑥 − 𝑥′‖1   /   ℎ  ) 

Combine: 𝑘1 + 𝑘2, 𝑘1 ∗ 𝑘2, 𝑐 ∗ 𝑘1 (𝑐 > 0) 

use prev. knowledge, e.g. linear + Gaussian 

K-Nearest neighbour 

𝑦 = 𝑠𝑖𝑔𝑛 (∑ 𝑦𝑖[𝑥𝑖  𝑎𝑚𝑜𝑛𝑔 𝑘 𝑁𝑁 𝑜𝑓 𝑥]) 

Kernelized Perceptron + SVM 

arg min
1

𝑛
 ∑ max(0,   − 𝑦𝑖𝛼𝑇𝑘𝑖) 

arg min
1

𝑛
 ∑ max(0,1 − 𝑦𝑖𝛼𝑇𝑘𝑖)

+ 𝜆𝛼𝑇𝐷𝑦𝐾𝐷𝑦𝛼 

where 𝑘𝑖 = [𝑦1𝑘(𝑥𝑖 , 𝑥1), … , 𝑦𝑛𝑘(𝑥𝑖, 𝑥𝑛)] 

Kernelized Linear Regression (KLR) 

𝛼̂ = arg min
1

𝑛
 ‖𝛼𝑇𝐾 − 𝑦‖2

2 + 𝜆𝛼𝑇𝐾𝛼 

Closed-form:    𝛼̂ = (𝐾 + 𝑛𝜆𝐼)−1𝑦 

6. Class imbalance 

Replace cost:  𝑙𝐶𝑆(𝑤, 𝑥, 𝑦) = 𝑐𝑦 𝑙(𝑤, 𝑥, 𝑦) 

Accuracy:   
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=  

𝑇𝑃 + 𝑇𝑁

𝑛
 

Precision:   
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 ,        Recall:  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 score:  
2 𝑇𝑃

2 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
=

2
1

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 + 

1

𝑟𝑒𝑐𝑎𝑙𝑙

  

True Positive: 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 ,    False Positive: 

𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

Multi-class Hinge Loss: train many 𝑤′𝑠 

𝑙𝑀𝐶 = max (0, 1 + 𝑚𝑎𝑥 𝑤(𝑗)𝑇𝑥 − 𝑤(𝑦)𝑇𝑥) 

7. Neural nets 

Sigmoid: 
1

1+exp(−𝑧)
 ,  Tanh: 

exp(𝑧) − exp(−𝑧)

exp(𝑧) + exp(−𝑧)
 

ReLu: max(𝑧, 0) , Leaky ReLu:  𝛼 𝑧, 𝑧 < 0 

Forward-propagation 

𝑧(𝑙) = 𝑊(𝑙)𝑣(𝑙−1) , 𝑣(𝑙) =  𝜑(𝑧(𝑙)) 

Back propagation 

Error:   𝛿(𝑙) = 𝜑′(𝑧(𝑙)) ∗ (𝑊(𝑙+1)𝑇𝛿(𝑙+1)) 

Gradient:   ∇𝑊(𝑙)  𝑙(𝑊, 𝑥, 𝑦) = 𝛿(𝑙)𝑣(𝑙−1)𝑇 

Momentum 

𝑎𝑡+1 = 𝑚 ∗ 𝑎𝑡 + 𝜂𝑡∇𝑤 𝑙(𝑊, 𝑦, 𝑥) 

𝑊𝑡+1 = 𝑊𝑡 − 𝑎𝑡+1                             

8. Clustering 

k-means: linear decision boundaries 

𝑅̂(𝜇) =  ∑ min
j

‖𝑥𝑖 − 𝜇𝑗‖
2

2

𝑖
 

Lloyd’s heuristic: 

𝑧𝑖
(𝑡)

= arg min
𝑗

‖𝑥𝑖 − 𝜇𝑗
(𝑡−1)

‖
2
 

𝜇𝑗
(𝑡)

=
1

𝑛𝑗
 ∑ 𝑥𝑖

𝑧
𝑖
(𝑡)

=𝑗
                   



9. Dimension reduction 

Linear dimension reduction: ‖𝑤‖2 = 1 

(𝑤∗, 𝑧∗) = arg min ∑‖𝑧𝑖𝑤 − 𝑥𝑖‖2
2 

Principal Component Analysis: k-dim. 

𝑧𝑖 = 𝑊𝑇𝑥𝑖 , 𝑊 = (𝑣1| … |𝑣𝑘) 

𝛴 = ∑ 𝜆𝑖 𝑣𝑖  𝑣𝑖
𝑇 =

1

𝑛
 ∑ 𝑥𝑖 𝑥𝑖

𝑇  ,   𝜆𝑖 ≥ 0 

Can also be obtained using SVD: 

𝑋 = 𝑈 𝑆 𝑉𝑇 → 𝑊 = (𝑣1| … |𝑣𝑘) 

Kernel PCA 

max
𝛼

  𝛼𝑇𝐾𝑇𝐾𝛼     𝑠. 𝑡.    𝛼𝑇𝐾𝛼 = 1 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑗
𝑇 𝑥𝑖  , 𝐾 = (𝑘1| … |𝑘𝑛) 

𝛼(𝑖) = arg max 𝛼𝑇𝐾𝑇𝐾𝛼  =  𝑣𝑖/√𝜆𝑖 

𝑧𝑖 = ∑ 𝛼𝑗
(𝑖)

 𝑘(𝑥, 𝑥𝑗) ∈  ℝ𝑘 

Autoencoder 

𝑓(𝑥; 𝜃) = 𝑓2(𝑓1(𝑥; 𝜃1); 𝜃2) 

10. Probabilistic modelling 

Prediction risk: should be minimized 

𝑅(ℎ) = ∫ 𝑃(𝑥, 𝑦) 𝑙(𝑦, ℎ) = 𝐸𝑥,𝑦[𝑙(𝑦, ℎ)] 

Maximum Likelihood Estimation (MLE) 

𝜃∗ = arg max
𝜃

𝑃̂(𝑦1, … , 𝑦𝑛|𝑥1, … , 𝑥𝑛, 𝜃) 

Lin. Gaussian:   arg min ∑  (𝑦𝑖 − 𝑤𝑇𝑥𝑖)2 

Maximum A Posteriori (MAP) 

wMAP = arg max
𝑤

𝑃(𝑤|𝐷) ,    𝑃(𝑤) 𝑘𝑛𝑜𝑤𝑛  

            = arg max
𝑤

∏ 𝑃(𝑦𝑖|𝑥𝑖, 𝑤)𝑃(𝑤) 

            = arg min
𝑤

∑ 𝑙 (𝑤, 𝐷) − log 𝑃(𝑤) 

11. Logistic regression 

MLE for logistic regression (classification) 

𝑙(𝑤) = log(1 + 𝑒𝑥𝑝(−𝑦𝑤𝑇𝑥)) 

where assume Bernoulli noise: 𝑃(𝑦|𝑥, 𝑤) 

= 𝐵𝑒𝑟(𝑦, 𝜎(𝑤𝑇𝑥)) =
1

1 + exp(−𝑦𝑤𝑇𝑥)
 

𝑅̂ =  ∑ log(1 + 𝑒𝑥𝑝(−𝑦𝑖  𝑤𝑇𝑥𝑖))
𝑖

+ 𝑟𝑒𝑔 

SGD for L2-reg. logistic regression 

Update:     𝑃(𝑌 ≠ 𝑦|𝑤, 𝑥) =  
1

1+exp(𝑦𝑤𝑇𝑥)
 

Step: 𝑤 ← 𝑤(1 − 2𝜆𝜂𝑡) + 𝜂𝑡𝑦𝑥𝑃(𝑌 ≠ 𝑦) 

Multi-class logistic regression: e.g. NN 

𝑃(𝑌 = 𝑖 | 𝑥, 𝑤1, … , 𝑤𝑐) =
exp (𝑤𝑖

𝑇𝑥)

∑ exp(𝑤𝑗
𝑇𝑥)

 

12. Bayesian decision theory 

Min. cost:   𝑎∗ = arg min 𝐸[𝐶(𝑦, 𝑎)|𝑥] 

Logistic regression: most likely action  

𝑎∗ = arg max 𝑃̂(𝑦 |𝑥) = 𝑠𝑖𝑔𝑛(𝑤𝑇𝑥) 

Doubtful logistic regression: “better ask” 

𝐶  {
[𝑦 ≠ 𝑎], 𝑎 ∈ {±1}

𝑐 ,      𝑎 = 𝐷
 ,   𝑎∗   {

𝑦 , 𝑃(𝑦|𝑥) ≥ 1 − 𝑐
𝐷 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Least-squares regression 

𝐶(𝑦, 𝑎) = (𝑦 − 𝑎)2 , 𝑎∗ = 𝑤𝑇𝑥 

13. Generative modelling 

Discriminative models: learn 𝑃(𝑦|𝑥) 

Generative models:       learn 𝑃(𝑦, 𝑥) 

1. Estimate prior on label:      𝑃(𝑦) 

2. Conditional dist. per class: 𝑃(𝑥 | 𝑦)  

3. Predictive dist: 𝑃(𝑦 |𝑥) ≈ 𝑃(𝑦)𝑃(𝑥|𝑦) 

     each feature is indep. of other, given y 

𝑃(𝑦|𝑥) =
1

𝑍
 𝑃(𝑦) 𝑃(𝑥|𝑦) =

𝑃(𝑥, 𝑦)

𝑃(𝑥)
 

𝑍 = ∑ 𝑃(𝑦) 𝑃(𝑥|𝑦)
𝑦

= 𝑃(𝑥) 

To maximize:   𝑦̂ = arg max 𝑃(𝑦′ | 𝑥) 

Gaussian Naïve Bayes Classifier 

𝑃(𝑌 = 𝑦) = 𝑝𝑦 = 𝐶𝑜𝑢𝑛𝑡(𝑌 = 𝑦)/𝑛 

𝑃(𝑥|𝑦) = 𝒩(𝑥𝑖; 𝜇𝑦,𝑖, 𝜎𝑦,𝑖
2 ) 

𝜇𝑦,𝑖 =
∑ 𝑥𝑗,𝑖𝑦𝑗=𝑦

𝐶𝑜𝑢𝑛𝑡(𝑦)
,    𝜎𝑦,𝑖

2 =
∑ (𝑥𝑗,𝑖 − 𝜇𝑗,𝑖)

2
𝑦𝑗=𝑦

𝐶𝑜𝑢𝑛𝑡(𝑌 = 𝑦)
 

𝑦 = arg max
𝑦′

𝑃(𝑦′) ∏ 𝑃(𝑥𝑖|𝑦′)
𝑖

 

Shared variance: linear class boundary 

𝑦 = 𝑠𝑖𝑔𝑛(𝑓(𝑥)), 𝑓(𝑥) = 𝑤𝑇𝑥 + 𝜔0 

Discriminant function 

𝑓(𝑥) = log
𝑃(𝑌 = 1 | 𝑥)

𝑃(𝑌 = −1 | 𝑥)
 

Gaussian Bayes Classifier 

As features no more independent, we 

require the empirical covariance matrix 

𝛴𝑦 =
1

𝐶𝑜𝑢𝑛𝑡(𝑦)
∑(𝑥𝑖 − 𝜇𝑦)(𝑥𝑖 − 𝜇𝑦)

𝑇
 

Categorical Naïve Bayes Classifier 

𝜃𝑐|𝑦 = 𝑃(𝑋𝑖 = 𝑐|𝑦) =
𝐶(𝑋𝑖 = 𝑐, 𝑌 = 𝑦)

𝐶𝑜𝑢𝑛𝑡(𝑌 = 𝑦)
 

14. Missing data 

Gaussian Mixture Models (GMM) 

try to guess label by modelling data 

𝑃(𝑥 | 𝜃) = ∑ 𝑤𝑖 𝒩(𝑥; 𝜇𝑖 , 𝛴𝑖)
𝑖

 

𝑤𝑖 ≥ 0 , ∑ 𝑤𝑖
𝑖

= 1 

Represent data as clusters of Gaussians: 

𝐿 = − ∑ log ∑ 𝑤𝑗 𝒩( 𝑥𝑖  |𝜇𝑗 , 𝛴𝑗)
𝑗𝑖

 

Estimating 𝑃(𝑥) permits outlier detection 

Gaussian Mixture Classifier (GMC) 

𝑃(𝑦|𝑥) =
𝑃(𝑦)

𝑃(𝑥)
∑ 𝑤𝑗

(𝑦)
𝒩 (𝑥; 𝜇𝑗

(𝑦)
, 𝛴𝑗

(𝑦)
)

𝑗
 

Hard-EM: force data point choose class 

E-step (expectation): predict most likely 

𝑧𝑖
(𝑡)

= arg max
𝑧

𝑃(𝑧|𝜃(𝑡−1))𝑃(𝑥𝑖|𝑧, 𝜃(𝑡−1)) 

𝐷(𝑡) = {(𝑥1, 𝑧1
(𝑡)

) , … , (𝑥𝑛, 𝑧𝑛
(𝑡)

)}                  

M-step (maximization): compute MLE 

𝜃(𝑡) = arg max
𝜃

𝑃(𝐷(𝑡)|𝜃) 

Soft-EM: assign “responsibilities” 

𝛾𝑗(𝑥) = 𝑃(𝑍 = 𝑗|𝑥, 𝜃) =
𝑤𝑗 𝑃(𝑥|𝜇𝑗, 𝛴𝑗)

∑ 𝑤𝑙𝑃(𝑥|𝜇𝑙 , 𝛴𝑙)𝑙
 

𝑤𝑗
(𝑡)

=
1

𝑛
∑ 𝛾𝑗

(𝑡)
(𝑥𝑖),   𝜇𝑗

(𝑡)
=

∑ 𝛾𝑗
(𝑡)(𝑥𝑖)𝑥𝑖

∑ 𝛾𝑗
(𝑡)(𝑥𝑖)

 

𝛴𝑗
(𝑡)

=
∑ 𝛾𝑗

(𝑡)
(𝑥𝑖) (𝑥𝑖 − 𝜇𝑗

(𝑡)
) (𝑥𝑖 − 𝜇𝑗

(𝑡)
)

𝑇

∑ 𝛾𝑗
(𝑡)

(𝑥𝑖)
 

Choose k using cross-validation, avoid 𝜎 ≈ 0 

Semi-supervised learning 

For labelled data:   𝛾𝑗(𝑥𝑖) = [𝑗 = 𝑦𝑗] 

M-step ≅ GBC with weighted data 

Generative Adversarial Network 

Use discriminative learning to train 

generative model (hard to distinguish) 

- Generator G vs Discriminator D 
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General terminology 

Regression: predict real-valued labels 

Representation: should be 

- independent of length of document 

- include ordering (e.g. pairs of words) 

- aggregate similar words (“embedding”) 

Overfitting: learn training noise as well 

- inefficient, no generalizable solution 

Unsupervised learning: no given output 

- clustering, dim. reduction, generative 

- common representation of data sets 

- identification of latent variables 

- exploratory data analysis, anomalies 

- feature learning / embedding 

Transfer learning: learn on one domain, 

test / apply knowledge on another one 

Reinforcement learning: interact with an 

unknown environment to learn 

Homogeneous representation 

𝑤̃ = [ 𝑤1 … 𝑤𝑑  𝑤0] , 𝑥̃ = [𝑥1 … 𝑥𝑑  1]𝑇 

Always test on separate testing set! 

Else underestimate the prediction error 

(estimated error ≤ expected error): 

𝐸[𝑅̂𝐷(𝑤𝐷)] ≤ 𝐸[𝑅(𝑤𝐷)] 

K-fold cross-validation: reduce variance 

1. partition data into k folds 

2. Test on (k-1) folds, evaluate on last 

Surrogate loss: replace original function, 

as better computationally behaving (e.g. 

differentiable at all places); validate with 

the loss you actually care about! 

Stochastic gradient decent: evaluate 

gradient only at few points for efficiency 

Feature selection: reduce features for 

- interpretability (“understand” class) 

- generalization (simpler, no overfitting) 

- computation (less storage) 

Nonlinear classification boundaries: use 

non-linear transformation of feature 

vectors and linear classification 

Kernels: allow to efficiently compute on 

high-dimensional feature vector without  

explicitly calculating the transformation; 

as don’t explore high-dimensional space 

(only based on data), no overfitting 

Kernelized perceptron: similar to k-NN, 

but with optimized weights 𝛼𝑖; can 

capture global trends (sparse 𝛼𝑖′𝑠) and 

only depend on “wrongly classified” data 

Non-parametric learning: number of 

parameters = number of data points 

Class-imbalance due to small sample set 

- subsampling: remove majority samples 

- upsampling: repeat minority samples 

- cost-sensitive classification:  𝑙𝐶𝑆 = 𝑐𝑦 𝑙 

Receiver Operator Curve (ROC): True 

Positive Rate (y) / False Positive Rate (x) 

- Area under Curve (AUC) of ROC 

One-vs-all (OvA): train one classifier per 

class, one with highest confidence wins 

(requires unit length on weights to 

remain comparable, else cannot) 

- inherently imbalanced data 

One-vs-one (OvO): train one classifier for 

each pair of classes, class with highest 

number of positive prediction wins 

Error correcting output codes: try to 

estimate “label” of class as bit string 

Artificial Neural Network (ANN): 

nonlinear functions which are nested 

compositions of (variable) linear 

functions composed with (fixed) non-

linearities; use recursively inside 

𝑓(𝑥, 𝑤, 𝜃)  =  ∑ 𝜔𝑗 φ(θj
𝑇 𝑥)

𝑗
 

Vanishing Gradient Problem: activation 

functions lack gradient away from origin 

Forward propagation: 

for evaluation from input to output 

Backward propagation: 

for optimization from output to input 

Universal Approximation Theorem: “can 

approximate any piece-wise linear fct 

with sufficient neurons” using sigmoids 

Softmax: used for multi-class 

classification at output of NN 

𝜎𝑖 =
𝑒𝛾𝑖

∑ 𝑒𝛾𝑗
𝑗

 

Weight initialization: keep variance of 

weights approximately constant using 

Glorot / He initialization 

Learning rate: guarantee convergence by 

reducing step size after a while, e.g. 

𝜂𝑡 = min(0.1, 100 𝑡⁄ ) 



Overfitting for NNs can be prevented 

- early stopping: don’t converge fully, but  

  stop after validation error increases 

- regularization: add penalty for weights 

- dropout: don’t train all weights always 

- batch-normalization: ensure that inputs  

  of hidden layers are normalized 

Augmentation: create artificial samples 

by using invariant transformation 

Convolutional Neural Network: 

specialized applications where each 

hidden unit depends only on “close-by” 

input, weights identical across one layer 

Pooling layer: aggregate inputs by e.g. 

doing average or max pooling over patch  

Convex optimization: For kernels, can 

never get stuck in local minima as convex 

problem; ANN & k-means non-convex! 

Unsupervised learning: “learning 

without labels”, learn functional 

relationship, exploratory data analysis 

- clustering: unsupervised classification 

- dimension reduction: unsup. Regression 

Clustering 

- hierarchical: build a tree of clusters 

- partitional: based on partition cost 

- model-based: maintain cluster model 

K-means: vulnerable to over- or 

underrepresent clusters by random 

- K-Means++: pick likelihood increases 

with distance to existing centers 

𝑝 =
1

𝑧
 min‖𝑥𝑖 − 𝜇𝑒‖2 

Elbow method: diminishing return with 

increased complexity, hence introduce 

cost for additional complexity to prevent 

ever-decreasing loss functions 

Embedding: low-dimensional 

representation of complex feature vector 

Principal Component Analysis: project 

feature vector onto k largest 

eigenvectors to compress with least loss 

Spectral clustering: Kernel k-means 

- apply k-means in the feature space 

induced by the kernel k 

Non-linear feature maps 

- can discover non-linear feature maps in 

closed form using kernel PCA 

- Kernel PCA requires data to create PCA 

Autoencoder: try to losslessly compress 

(“encode”) and decompress (“decode”) 

- number of output = number of inputs,  

  but hidden layers are usually smaller 

- “Supervised” by using original data 

- equivalent to PCA for 𝜑(𝑧) = 𝑧 

- can be used to denoise 

  (capacity too small to capture noise) 

Bias Variance trade-off: more complex 

functions have less bias but high variance 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 = 𝐵𝑖𝑎𝑠2 + 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑁𝑜𝑖𝑠𝑒 

Bias: excess risk knowing P(X,Y), inf. data 

Variance: risk due to using limited data 

Noise: risk incurred by optimal model 

MAP: explicitly express assumptions on 

your parameter distribution with a prior 

- can be seen as regularization on MLE 

Prior: can regard prior as a regularization 

- L2: Gaussian prior 

- L1: Laplacian prior 

Asymmetric loss: can punish false 

positives more than false negatives 

Active learning: request labels for the 

data you are most uncertain about 

- called “uncertainty sampling” 

- violates i.i.d. assumption 

Discriminant function: for GNB, same 

predictions as logistic regression 

𝑦 = 𝑠𝑖𝑔𝑛 (𝑙𝑜𝑔
𝑃(𝑌 = 1|𝑥)

𝑃(𝑌 = −1|𝑥)
) 

GNB vs GBC 

- GNB can suffer from overconfidence if 

features are not independent 

- GBC requires quadratic complexity in d 

Linear Discriminant analysis 

projection to 1-dim subspace that 

maximizes ratio of between-class / 

within-class variance 

- LDA: little within, max between 

- PCA: maximize all variance 

Outlier detection 

Generative models allow outlier 

detection by defining 𝑃(𝑥) ≤ 𝜏; 

however, are less robust if model 

assumptions are not valid 

Conjugate distribution: posterior 

distribution remains same family as prior 

GMM: try to guess latent variable 

(clustering), as don’t have the label 

- else could directly do MLE / GBC 

Formulae 

‖𝒙‖𝒑 = (∑ |𝒙𝒊|𝒑
𝒏

𝒊=𝟏
)

 
𝟏
𝒑

 , 𝒑 ∈ (𝟏, ∞) 

〈𝒙, 𝒚〉 ≤  ‖𝒙‖𝒑 ‖𝒚‖𝒒 ,
𝟏

𝒑
+

𝟏

𝒒
= 𝟏 

Probability 

𝑷(𝑨𝒊 |𝑩)  =  
𝑷(𝑩 |𝑨𝒊 ) 𝑷(𝑨𝒊)

∑ 𝑷(𝑩 |𝑨𝒋) 𝑷(𝑨𝒋)
 

             𝑽𝒂𝒓(𝑿) =      𝑬[(𝑿 − 𝑬[𝑿])𝟐]

=      𝑬[𝑿𝟐] − 𝑬[𝑿]𝟐  

Gaussian 

𝑵(𝝁, 𝝈𝟐) ~
𝟏

√𝟐𝝅𝝈𝟐
 𝒆𝒙𝒑 (−

(𝒙 − 𝝁)𝟐

𝟐𝝈𝟐 ) 

𝝁𝒋 =
𝟏

𝒏
 ∑ 𝒙𝒊,𝒋

𝒏

𝒊=𝟏

,   𝝈𝒋
𝟐 =

𝟏

𝒏
 ∑(𝒙𝒊,𝒋 − 𝝁𝒋)

𝟐
𝒏

𝒊=𝟏

 

Empirical covariance matrix 

𝜮 =   
𝟏

𝒏
   ∑ 𝒙𝒊 𝒙𝒊

𝑻
𝒏

𝒊=𝟏
 

Bayes rule 

𝑷(𝒘|𝒙, 𝒚) =  
𝑷(𝒘|𝒙) 𝑷(𝒚| 𝒙, 𝒘)

𝑷(𝒚|𝒙)
 

Least square loss 

𝒍(𝒚, 𝒉) = (𝒀 − 𝒉(𝒙))
𝟐

 

Poisson distribution 

𝑷(𝑿 = 𝒙) =  
𝝀𝒙 𝒆−𝝀

𝒙!
 

KL divergence 

𝑲𝑳(𝒑 || 𝒒) = ∑ − 𝒑(𝒙)𝒍𝒐𝒈 
𝒑(𝒙)

𝒒(𝒙)
 


