Intro to ML Summary 25.07.2019

1. Regression
Residual: quantifies goodness of fit

Rw)= Y 2=) (i —w'x)?
i i
Least-squares: solve direct or iteratively
w* = argminZ(yi —wTx;)?
Closed form: w* = (XTX)"1XTy

Convex: local minima is global minima

fAx+ (A =Dx") <Af(x)+ (A = Df(x")

Gradient decent: start at any w, € R?

Weer = We — 1 V R(we)
“Empirical risk”: VR(w) = =2 ¥y x7

Line search: n; € argmin ﬁ(wt -nV 1?)
Bold driver: increase step size if less risk

2. Model selection & validation

Expected error / “true risk”
R(w) = f P(x,y) (v — wTx)? dxdy
= Exyl(y —w'x)?]
Rp(w) = = Z(J’i —wix)?
ID|
Ridge regression: regularize weights
min= Y (v = wix)? + 2wl

w=X'X+A2D1xTy

Standardization: 4 = 0,0% = 1

X j = (x; — uj)/oj

3. Classification

0/1loss: ly/1(x;) = [y; # sign(w"x))]
Perceptron: 1,(x;) = max(0, —y,w"x;)

Hinge loss: [,,(w) = max(0,1 —y wTx)

Stochastic Gradient Decent: few points
Wepr = we — 0 VIwg x',y")

Mini-batch: avg over batch of points
(reduces variance, allows parallelization)

Perceptron: SGD with [, andn = 1

Support Vector Machine: max. margin
Use [j, to enforce margin + regularize

1
arg minE Z max(0,1 —y wTx) + 4w/,

4. Feature selection

Greedy forward select: choose best
feature and add 1 if it decreases loss
Greedy backward: remove if advantage

Lasso: use [; for sparsity regularization,
force weights to 0 to simplify model

; l — w2 y
min= » (i = w')? + Alwll,
5. Kernels
Ansatz: W= Y a; y; X;

Kernels calc inner products efficiently:

1 Z Z
arg min— max <0, - ayl-ijl-Tx]->
n i j

k(e x") = ¢p(0) p(x")

Kernel trick: inner product — kernel

forx - ¢(x)

Kernelized Perceptron: for any (x;, y;)

y = sign (Z} a]-y]-k(x]-,xi)>

Yy #yira,=a;+n., elsea; 1 =a;

Kernel properties:

i) must be symmetric: k(x,y) = k(y, x)

ii) kernel matrix K must be positive semi-
definite: x"Kx >0 o 1; =0V EVs

Can always construct a feature map:
K=UDU"=¢"¢p, ¢"=UD?
k(i,)) =K ;= ¢! ¢;, P:i > P

Linear: k(x,x") =xTx'
Polynomial: k(x,x") = (xTx" + 1)@
Gaussian: k = exp(— ||x — x'||,>/2h?)
Laplacian: k =exp (—|lx—x'll; / h)

Combine: ki + ko, ki xky, c*kqy(c>0)
use prev. knowledge, e.g. linear + Gaussian

K-Nearest neighbour

y = sign (Z yilx; among k NN of x])
Kernelized Perceptron + SVM
et
argmin — Z max(0, —y;a’k;)
1
arg min; Z max(0,1 — y;a’k;)
+Aa"DyKDya
where k; = [y, k(x;, x1), ..., Yok (x;, x5)]
Kernelized Linear Regression (KLR)
1
a= argmin; laTK — yl|3 + 2a"Ka

Closed-form: & = (K + nAl)™ly

6. Class imbalance

Replace cost: lcs(w,x,y) = ¢, l(w,x,y)

TP + TN TP + TN
Accuracy: =
TP + TN + FP + FN n
. T TP
Precision: , Recall:
TP + FP TP + FN
2TP 2
F1 score: = T T
2TP + FP + FN

precision = recall

. FP
, False Positive: TNTFP

ere TP
True Positive: ———
TP + FN N + FP

Multi-class Hinge Loss: train many w's

lyc = max (0,1 + max wTx — wO)Ty)

7. Neural nets

Sigmoid: Trexp(-2)’ " exp(2) + exp(-2)

RelLu: max(z,0), Leaky RelLu: a2,z <0

Forward-propagation

Back propagation
Error: 60 = go’(z(l)) * (W(l+1)T5(l+1))
Gradient: Vo I(W,x,y) = YOG
Momentum
Arpr =mxa; + 1V, [(W,y,x)
Wivr = Wi — a1
8. Clustering

k-means: linear decision boundaries
~ . 2
RG =) minllx - u[;
l
Lloyd’s heuristic:

Zi(t) H;t—l) ” 2

= arg min ”xi -
J

1
®_ 2 Z X
M7 L™

9. Dimension reduction

Linear dimension reduction: ||w||, = 1
(w*,2") = argmin) |lzw — %1l

Principal Component Analysis: k-dim.
zi=WTx;, W= (v1]...|v)

1
2=21iviviT=£inxiT, ALZO

Can also be obtained using SVD:
X=USVT > W = (vy] ... |vy)

Kernel PCA
max a’KTKa s.t. a’Ka=1
a
k(xi'xj) = x]T xi) K = (kll |kn)

a® =argmaxa’K"Ka = v;/\[4;
Z; = Z aj(i) k(x,x;) € RF
Autoencoder
f(x;0) = fo(f1(x; 61); 62)
10. Probabilistic modelling
Prediction risk: should be minimized

R(h) = f P(x,y) 1, h) = By [1(y,)]

Maximum Likelihood Estimation (IMLE)
0" = arg méixﬁ(yl, e Yl X1, ey X0, 0)

Lin. Gaussian: argminy, (y; — w’x;)?

Maximum A Posteriori (MAP)

Wypap = arg mMG;‘XP(W|D) , P(w) known
= arg max 1_[P(y;|x;, w)P(w)
w

= argminZl (w,D) —log P(w)
w

11. Logistic regression

MLE for logistic regression (classification)
L(w) =log(1 + exp(—ywTx))

where assume Bernoulli noise: P(y|x, w)
1

1+ exp(—ywTx)
R= Z.log(l + exp(—y; wTx))) + reg
l

= Ber(y,a(w'x)) =

SGD for L2-reg. logistic regression
1

P(Y :ptylW,X) = m

Update:

Step:w < w(l — 24n,) + nyxP(Y # y)

Multi-class logistic regression: e.g. NN
exp(w/] x)

Y exp(w] x)

12. Bayesian decision theory

PY =i|x,wy,..,w,) =

Min. cost: a* = argmin E[C(y, a)|x]

Logistic regression: most likely action

a* = argmaxP(y |x) = sign(wTx)

Doubtful logistic regression: “better ask”

{[yia],aE{J_rl}) {y,P(yIX) =1-c
) a .
D, otherwise

c, a=D
Least-squares regression
C(YJ a) = (y - a)Z)

13. Generative modelling

a*=wlx

Discriminative models: learn P(y|x)
Generative models: learn P(y, x)

1. Estimate prior on label: P(y)

2. Conditional dist. per class: P(x | y)

3. Predictive dist: P(y [x) = P(y)P(x|y)
each feature is indep. of other, giveny

P(x,y)
P(x)

1
PGlx) = POy) P(xly) =

2= P@)P(xly) = P(x)
y
To maximize: y = argmaxP(y’ | x)

Gaussian Naive Bayes Classifier
P(Y =y) =p, = Count(Y =y)/n

P(xly) = N (x;; iy 1, 05

2
Ty i, Ty)

Hyi = Count(y)’ Oyi = Count(Y = y)

y = argmax P(y’) H_P(xily’)
4

Shared variance: linear class boundary
y = sign(f(x)), f(x)=wlx + w,

Discriminant function
PY=1]|x)
=log—-——_
f@) =log =31

Gaussian Bayes Classifier
As features no more independent, we
require the empirical covariance matrix

1
Zy = mZ(’ft —y) (i~ y)"

Categorical Naive Bayes Classifier
C(Xl =, Y = y)
Count(Y =y)

Qc|y =PX;=cly) =

14. Missing data

Gaussian Mixture Models (GMM)
try to guess label by modelling data

P(x]0) = Z,Wi N py, 2)

w; =0, Z‘wizl
i

Represent data as clusters of Gaussians:

L= —Z'logzle N(xi |wj %)
i j

Estimating P (x) permits outlier detection

Gaussian Mixture Classifier (GMC)

P(y)
P(ylx) — VV](y)N (x; #](‘Y)’Zj(y))

P(x) £uj
Hard-EM: force data point choose class
E-step (expectation): predict most likely
® _ - _
z;’ = arg mZaxP(z|9(t D)P(x;|z, 6¢D)

DO = {(x1;2§t))' o (xn, Zr(Lt))}

M-step (maximization): compute MLE
® = pP(D®
0 arg max (DW|0)

Soft-EM: assign “responsibilities”
w; P(x|w), 2;)
2w P(x|uy, 2p)

vi(x) =P(Z =jlx,0) =

®
@® _ l ® ¢, @® _ Zy] (xi)xi
wim =) v), W=
Zyj (xi)
T
$© _ ZY]-(t) (x:) (xi - li,(-t)) (xi - .U](-t))

] t
Sy 9 x)
Choose k using cross-validation, avoid o = 0

Semi-supervised learning
For labelled data: y;(x;) = [j = yj]
M-step = GBC with weighted data

Generative Adversarial Network

Use discriminative learning to train
generative model (hard to distinguish)
- Generator G vs Discriminator D

Summary slides

Regularizer

Ridge Likelihood _ Regularized
= Prior Regression function Log. Reg.
o
Probabilistic 'E? z
interpretation B
Gaussian Likelihood Logistic
Regression unction regression
iri i Loss funct.
Err?pfrm-ul f-?:sk Least squ'ares Perceptron/SVM
minimization Regression
Kernelized _lo5funct. garnelized
PCA k-Means
& 2
H 2
Parameterize @ o
Autoencoders features PCA Loss funct. K-Means
Parameterize Loss funct
Least squares 055 Tunct.
ANNs features | . Perceptron
Regression
Kernelized I1-Regression Kernelized s
Regression {Lasso) SVM 1- :”V'
Al o
£ @ % F
% 3 % &
% \;& A ':
Ridge ™ Lass funct., Linear ™
Regression <— —> syMm
N
2 Kernelized 3
2 3
5 Perceptron @
& = &
@ (V,;) E
Loss funct, % =
Least squ_ares . Perceptron Loss funct
Regression
Discriminative Generagtive
Discri
Neural nets E:::;T,:‘e GANs/
€ ! VAEs
e £la
£le <l B
[JEl 4 E]
gl o2
Logistic Discrim./ Gaussian M Gaussian
regression generative Bayes' training mixtures
classifier

General terminology
Regression: predict real-valued labels

Representation: should be

- independent of length of document

- include ordering (e.g. pairs of words)

- aggregate similar words (“embedding”)

Overfitting: learn training noise as well
- inefficient, no generalizable solution

Unsupervised learning: no given output
- clustering, dim. reduction, generative
- common representation of data sets

- identification of latent variables

- exploratory data analysis, anomalies

- feature learning / embedding

Transfer learning: learn on one domain,
test / apply knowledge on another one

Reinforcement learning: interact with an
unknown environment to learn

Homogeneous representation

W=[w..wgwl,&=[xg..x41]7

Always test on separate testing set!
Else underestimate the prediction error
(estimated error < expected error):

E[ﬁD (WD)] < E[R(wp)]

K-fold cross-validation: reduce variance
1. partition data into k folds
2. Test on (k-1) folds, evaluate on last

Surrogate loss: replace original function,
as better computationally behaving (e.g.
differentiable at all places); validate with
the loss you actually care about!

Stochastic gradient decent: evaluate
gradient only at few points for efficiency

Feature selection: reduce features for

- interpretability (“understand” class)

- generalization (simpler, no overfitting)
- computation (less storage)

Nonlinear classification boundaries: use
non-linear transformation of feature
vectors and linear classification

Kernels: allow to efficiently compute on
high-dimensional feature vector without
explicitly calculating the transformation;
as don’t explore high-dimensional space
(only based on data), no overfitting

Kernelized perceptron: similar to k-NN,
but with optimized weights a;; can
capture global trends (sparse ;'s) and
only depend on “wrongly classified” data

Non-parametric learning: number of
parameters = number of data points

Class-imbalance due to small sample set
- subsampling: remove majority samples
- upsampling: repeat minority samples

- cost-sensitive classification: lcg = ¢, 1
Receiver Operator Curve (ROC): True
Positive Rate (y) / False Positive Rate (x)
- Area under Curve (AUC) of ROC

One-vs-all (OvA): train one classifier per
class, one with highest confidence wins
(requires unit length on weights to
remain comparable, else cannot)

- inherently imbalanced data

One-vs-one (OvO): train one classifier for
each pair of classes, class with highest
number of positive prediction wins

Error correcting output codes: try to
estimate “label” of class as bit string

Artificial Neural Network (ANN):
nonlinear functions which are nested
compositions of (variable) linear
functions composed with (fixed) non-
linearities; use recursively inside

flx,w,0) = Zj wj (p(GjT x)

Vanishing Gradient Problem: activation
functions lack gradient away from origin

Forward propagation:

for evaluation from input to output
Backward propagation:

for optimization from output to input

Universal Approximation Theorem: “can
approximate any piece-wise linear fct
with sufficient neurons” using sigmoids

Softmax: used for multi-class
classification at output of NN
e)/i

= —Zj -7

Weight initialization: keep variance of
weights approximately constant using
Glorot / He initialization

Oj

Learning rate: guarantee convergence by
reducing step size after a while, e.g.

n: = min(0.1,100/t)

Overfitting for NNs can be prevented

- early stopping: don’t converge fully, but
stop after validation error increases

- regularization: add penalty for weights

- dropout: don’t train all weights always

- batch-normalization: ensure that inputs
of hidden layers are normalized

Augmentation: create artificial samples
by using invariant transformation

Convolutional Neural Network:
specialized applications where each
hidden unit depends only on “close-by”
input, weights identical across one layer

Pooling layer: aggregate inputs by e.g.
doing average or max pooling over patch

Convex optimization: For kernels, can
never get stuck in local minima as convex
problem; ANN & k-means non-convex!

Unsupervised learning: “learning
without labels”, learn functional
relationship, exploratory data analysis

- clustering: unsupervised classification

- dimension reduction: unsup. Regression

Clustering

- hierarchical: build a tree of clusters

- partitional: based on partition cost

- model-based: maintain cluster model

K-means: vulnerable to over- or
underrepresent clusters by random

- K-Means++: pick likelihood increases
with distance to existing centers

p=— minllx; - |

Elbow method: diminishing return with
increased complexity, hence introduce
cost for additional complexity to prevent
ever-decreasing loss functions

Embedding: low-dimensional
representation of complex feature vector

Principal Component Analysis: project
feature vector onto k largest
eigenvectors to compress with least loss

Spectral clustering: Kernel k-means
- apply k-means in the feature space
induced by the kernel k

Non-linear feature maps

- can discover non-linear feature maps in
closed form using kernel PCA

- Kernel PCA requires data to create PCA

Autoencoder: try to losslessly compress
(“encode”) and decompress (“decode”)
- number of output = number of inputs,
but hidden layers are usually smaller
- “Supervised” by using original data
- equivalent to PCA for ¢(2) = z
- can be used to denoise
(capacity too small to capture noise)

Bias Variance trade-off: more complex
functions have less bias but high variance
Prediction error = Bias? + Variance + Noise
Bias: excess risk knowing P(X,Y), inf. data
Variance: risk due to using limited data
Noise: risk incurred by optimal model

MAP: explicitly express assumptions on
your parameter distribution with a prior
- can be seen as regularization on MLE

Prior: can regard prior as a regularization
- L2: Gaussian prior
- L1: Laplacian prior

Asymmetric loss: can punish false
positives more than false negatives

Active learning: request labels for the
data you are most uncertain about

- called “uncertainty sampling”

- violates i.i.d. assumption

Discriminant function: for GNB, same
predictions as logistic regression
. P(Y = 1]x)
y = sign (log m)

GNB vs GBC

- GNB can suffer from overconfidence if
features are not independent

- GBC requires quadratic complexity in d

Linear Discriminant analysis
projection to 1-dim subspace that
maximizes ratio of between-class /
within-class variance

- LDA: little within, max between

- PCA: maximize all variance

Outlier detection

Generative models allow outlier
detection by defining P(x) < 1;
however, are less robust if model
assumptions are not valid

Conjugate distribution: posterior
distribution remains same family as prior

GMM: try to guess latent variable
(clustering), as don’t have the label
- else could directly do MLE / GBC

Formulae
1

.
p
Ity = (Y. 1),
i=1

x,y) < llxllp Iyllq.

p € (1,0)
1 1
—+-=1
P q
Probability

P(B |A;) P(A))

Y P(B |4)) P(4))
E[(X — E[X])?]
= E[X?]-E[X]?

((x — M)2>
exp| ————

202

P(A; |B) =

Var(X)

Gaussian

N(n 0%) ~

V2mo?
1% 1%

_ 2 _ 2

=0 D xiy of =) (= m)
i=1

i=1
Empirical covariance matrix

1 n
r= = Z x; x7
n i=1

Bayes rule

P P f
P(wlx,y) = (W"j,)(yl(z)' ki

Least square loss
2
I(y,h) = (Y = h(x))

Poisson distribution
e
x!

PX=x) =

KL divergence

KL@ll0) =). - piog 20

