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Image Analysis & Computer Vision 

Summary  Andreas Biri, D-ITET     19.01.18 

1. Introduction 

Applications: Surveillance, Virtual/Augmented Reality, 

Remote Sensing, Robotics, Inspections, Medicine 

- easier if controlled conditions & little uncertainty 

- increased productivity/flexibility/reliability/attention 

Geometric optics: look at perfect, straight rays 

Physical optics: include interaction with materials 

Properties of light: EM wave with orthogonal E & M 

- wavelength (400 - 800nm for visible light) 

- direction (perpendicular to EM fields) 

- amplitude 

- phase 

- direction of polarisation (can be exploited) 

Visible spectrum: 380 – 760 nm 

- 380 – 450: violet 

- 450 – 490: blue 

- 490 – 560 : green (555nm most receptive) 

- 630 – 760: red 

- higher:  near-infrared (exploit at night) 

Solar spectrum has peaks around 500nm, therefore human 

vision most receptive there (exploit e.g. for NVGs) 

Near-infrared: region just above 760nm 

- can be used for better reception at night (invisible to 

human eye, therefore does not blind us but seen by cam) 

- useful for detecting vegetation, as strong reflection 

Use special light sources to find e.g. different plants simply 

by exploiting their different spectral reflectance 

 

1.1 Scattering (“Streuung”) 

Rayleigh:  small particles, strong wavelength dep. 

Mie: comparable size, weak wavelength dep. 

Non-selective: large particles, not wavelength dep. 

Long wavelengths observe less scattering (infrared) 

wherefore we can see through the clouds with radar 

Blue scattered the most (therefore blue sky, Tyndall effect) 

- if sand in the air, more scattering of other wavelengths 

1.2 Reflection (“Spiegelung”) 

Angle of reflection = Angle of incidence 

At high angle of incidence (very flat), full reflectance 

Brewster angle: for dielectrics (insulators), no reflection of 

parallel polarized light under correct angle (~ 60°) 

For conductors, more or less preserving, strong reflection 

everywhere (can be exploited in metal detection on chips) 

Roughness: can influence and lead to diffuse reflection 

- flat surface: specular reflection, everything mirrored 

- Rough:          diffuse   reflection, into many directions 

Lambertian reflection: observed brightness only depends 

on direction of incoming light, not on viewing angle 

- intensity decreases with viewing angle            (    cos 𝜃) 

- larger surface area observed if more oblique (1/cos 𝜃) 

- therefore, surface looks equally bright from all directions 

Bidirectional Reflection Distribution function (BRDF): 

4D function specifying how much light is reflected in 

direction from light coming from another one 

Does not depend on the wavelength 

 

1.3 Refraction (“Brechung”) 

In contrast to reflection, refraction depends on wavelength 

- angle of refraction different for varying wavelengths 

- 𝑛𝑖  is changing, material not same for all 𝜆′𝑠 

Dispersion: depends on material AND wavelength 

- if none, then absorption based on resonance frequencies 

1.4 Diffraction (“Beugung”): Also wavelength dependent 

1.5 Human Vision System (HVS) 

       

HVS much more sensible to green light (555nm) than rest 

- need stronger signal to achieve same brightness 

- topic of Photometry (subjective impression), whereas 

Radiometry focuses on objective, physical measurements 

 

Larger saturation gives more intense / pure colours 

Relative luminance: context plays a strong role (contrast) 

Spatial frequencies: brain automatically filters high freqs. 

Filling in: brain tries to auto-complete, find patterns 
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2. Acquisition of Images 

2.1 Cameras 

 

m : linear magnification 

Lens: captures light from one point and concentrates it 

- sharpness (light from one point focused) 

- brightness (large enough hole for sufficient light) 

- only works for points in focus of the lens 

- assume “thin” lens (𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 ≪ 𝑟𝑎𝑑𝑖𝑖), parallel to axis 

 

Depth of field: only in focus in certain range, else blurred 

- decreases with 𝑑, increases with 𝑍0 

- balance between incoming light (𝑑) & usable depth (∆𝑍) 

- 𝑓: focal lens ; 𝑏 : acceptable blob size (~ pixel) 

 

Aberrations 

Occur if assumptions violated: 

- not all points focused into 1 image point 

- all image points in a single plane 

- magnification constant 

Geometrical: forms are distorted 

- Spherical: parallel rays do not converge 

- Radial: different magnification for various angles 

   (Barrel:          magnification decreases on borders 

     Pincushion: magnification increases on borders) 

Chromatic: depends on wavelength & materials 

- rays of different wavelengths focused in different planes 

- use multiple lenses so that all are focused at same point 

Camera types 

CCD: Charge-coupled devices 

Use area more efficiently for light reception 

- has to read everything one after another (slow) 

- high production cost & power consumption 

- blooming (charges can spill over to other cells) 

CMOS: Complementary Metal Oxide Semiconductor 

Lots of logic in-between, less light sensitive 

- cheaper to produce, as standard CMOS technology 

- more noise because of per-pixel amplification 

- can increase sensitivity with micro lenses 

Colour separation 

Prism: separate light into 3 beams using prism & 3 sensors 

- full use of resolution, but expensive & sensitive 

Filter mosaic: Bayer filter, reduce effective resolution 

Filter wheel: rotate multiple filter in front of lens 

- only suitable for static scenes (take multiple shots) 

 

Perspective projection 

 
Origin at center of projection 

- 𝑍 axis: optical axis 

- 𝑋 & 𝑌: parallel to image rows / columns 

𝑢 = 𝑓 
𝑋

𝑍
 , 𝑣 = 𝑓 

𝑌

𝑍
 

For constant 𝑍 (far enough away), we can approximate: 

𝑥 = 𝑘 𝑋, 𝑦 = 𝑘 𝑌 , 𝑘 =
𝑓

𝑍
 (𝑠𝑐𝑎𝑙𝑖𝑛𝑔) 

 

Internally calibrated: know   𝑘𝑥 , 𝑘𝑦 , 𝑠, 𝑥0, 𝑦0 

- project coordinates in image plane to pixel coordinates 

Externally calibrated: know  𝐶, 𝑅 

- project world coordinates to coordinates in image plane 

Calibration Matrix 𝑲: includes all internal parameters 

𝑘𝑖  : number of pixels / unit length (𝑘𝑥 horizontally, 𝑘𝑦 vertically) 

𝑘𝑦 / 𝑘𝑥  : aspect ration 

Homogenous coordinates: additional dimensions 

- only defined up to a factor (does not influence coords) 

- can be used to create linear system (to use matrices) 
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Photometric camera model: light received at area 

decreases with angle by 𝑐𝑜𝑠4(𝛼) 

Irradiance: energy received on camera surface 

Radiance:   energy emitted by light source 

We can get the grey levels from the irradiance as 

𝑓 = 𝑔 𝐼𝛾 + 𝑑 , 𝑔 ∶ 𝐺𝑎𝑖𝑛 ("Blende") 

                                    𝑑 ∶ 𝑑𝑎𝑟𝑘 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

2.2 Illumination 

Simplify image processing by controlling environment 

Back-lighting: place lamps behind object 

- high-contrast silhouette images for binary vision 

Directional lighting: create sharp shadows / specular 

reflection to get information about shape (e.g. crack) 

Diffuse lighting: illuminate everything uniformly 

Polarized lighting: use different materials & filters 

- improve contrast btw Lambertian & specular reflections  

  (latter keeps polarization, diffuse reflection polarizes) 

- improve contrast btw dielectrics & metals (Brewster) 

Coloured lighting: highlight region of similar colour using a 

band-pass filter (monochromatic) 

Structured lighting: objects distort projected pattern 

Stroboscopic lighting: compensate motion blur 

- only illuminate shortly to have short integration time 

 

 

 

 

3. Sampling & Quantisation 

3.1 Discretization of continuous signals 

Sampling:        discretize space to pixels 

Quantization: discretize amplitude/signal to levels 

Mostly, rectangular shape used, even though hexagon 

would be optimal (more isotropic, no connectivity issues) 

For binary images (structural importance), quantization is 

only secondary, sampling is however central 

- can do non-uniform coverage (fine sampling for details) 

Sampling: integrate brightness over cell & read at center 

- represent signal through decomposition in orthogonal 

basis (Dirac eigenfct for each position) 

3.2 Spatial & frequency domain 

Point spread function: spatial distribution of points 

Separate convolution mask into smaller ones to reduce 

complexity of the operator and reduce computations 

Sinusoids are eigenfunctions of LSI systems and can 

therefore describe all signals by linear combination 

- LSI: linear shift-invariant (LTI for discrete case) 

Fourier transform: project function onto base 

𝐹(𝑢, 𝑣) =  ∬ 𝑓(𝑥, 𝑦) 𝑒−𝑖2𝜋(𝑢𝑥+𝑣𝑦) 𝑑𝑥𝑑𝑦
∞

−∞

 

Inverse Fourier transform: 

𝑓(𝑥, 𝑦) =  ∬ 𝐹(𝑢, 𝑣) 𝑒𝑖2𝜋(𝑢𝑥+𝑣𝑦) 𝑑𝑢𝑑𝑣
∞

−∞

 

Repetitive patterns show peaks in spatial frequencies (as 

periodic structure); mostly, DC components very strong 

- can be used to only show repetitions / discard structure 

Phase still central: tells “how to combine the amplitudes” 

 

Rotations: Fourier and spatial domain both rotate the 

same way (same direction) 

Scaling: zoom out in spatial (increase frequency) ↔  

               zoom in in frequencies (inverse proportionality) 

Modulation transfer fct: Fourier transform of point spread 

- can be easier to analyse in freq. domain, as convolution 

becomes multiplication of functions  

Sampling in spatial domain (convolution with a window) is 

multiplication with a 2D sinc in frequency domain (lowpass), 

as we integrate the intensity over the pixel area and 

thereby suppress high frequencies when integrating 

3.3 Discretization in space & frequency 

We need to discretize both in spatial & frequency domain 

Spatial domain: multiplication with 2D pulse train (pixels) 

→ convolution with Dirac train results in periodic 

repetition of the original signal which might overlap 

Aliasing: overlap of periodic repetitions of the same signal 

- if sample fast enough, periodic repetitions are separated 

far enough in frequency space (if bandlimited!) 

Sampling frequency ≥ 𝟐 ∗ maximal signal frequency 

Use Gaussian as a good approximation for sinc (as sinc 

requires infinite support) for interpolation (recreating 

spatial function from frequency components) as we want 

to multiply the frequency spectrum with a box filter to only 

get a single repetition of the Fourier spectrum of the signal 

- higher order kernel: decreased aliasing / better lowpass 
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Limiting the spatial extend: As pictures are limited in 

space, the recovered Fourier transform is affected 

Leakage: mixing up frequencies over the whole spectrum 

- can be compensated by subsequent sampling in freq. 

Frequency domain: when sampling in frequency spectrum, 

the spatial signal is repeated periodically 

To summarize: in order to get perfect representation: 

1. Signal needs to be band-limited 

2. Sampled at or above Nyquist rate 

Those two steps prevent Aliasing 

3. Sampling compatible with signal period 

This limits the Leakage problem from the limited space 

4. Signal is periodic 

This allows us to have discrete Fourier spectrum as well 

Discrete Fourier Transform assumes 

periodicity in spatial & frequency domain 
(might introduce false high frequencies, as “periodic”) 

 

    

4. Image Enhancement 

Normal image: high DC component, as large homogenous 

areas with power situated primarily around center 

Noise: white noise has frequency components everywhere 

→ High SNR in center of image, less at high frequencies 

- noise primarily at high frequencies (Salt-and-pepper) 

- edge information however also lost if dropped 

4.1 Noise suppression 

Convolution linear filters 
Use low-pass filter to mask high-freq. components 

1. 2D sinc (mask in frequ. Domain) 

- rippling effects due to ripples of spatial filter & 

convolution in spatial domain 

2. Use convolution filters without ripples (approximate) 

- Averaging filters: no ripples in spatial, but blurry image &  

                                  ripples in frequency domain 

                     (high order > smooth > better low-pass) 

- Box filters: in general, all have ripples in frequency  

                 (periodic, as box filters discrete in spatial domain) 

- Binomial filters (Gaussian): no ripples & always positive,            

                                separable (efficient), gives good low-pass 

All linear filters: remove low-pass gives blurred results 

Non-linear filters 
Edge-preserving to fight blurring 

Median filter: rank-order neighbours, take median value 

                         (odd-man-out, no new grey values emerge) 

→ Get rid of outliers (Salt-and-pepper noise), but no 

smoothing as with averaging filters and preserves 

discontinuities (but some details better with Gaussian) 

Anisotropic diffusion: adapt size of Gaussian “at runtime” 

- width/diffusion as a function of the image gradient 

- restrain so that not totally washed out (restraining force) 

1. Gaussian smoothing across homogenous area 

(large kernel) 

2. No smoothing across edges (small kernel) 

4.2 Image de-blurring 

(if a lot of noise: first smooth with a Gaussian) 

 

Unsharp masking 
Interpret blurred image as diffusion process & invert it 

Approximate Laplacian with Difference-of-Gaussians (DoG) 

- sharper impression due to “overshooting” of flanks 

Inverse filtering 
Estimate blurring filter and invert it 

- for 𝐵(𝑢, 𝑣) = 0, info is irreparably lost 

- for high frequencies, the inverted filter can amplify noise 

Wiener filter 
Optimal filter: no noise amplification, discard if low SNR 

- need to know 𝐻 very precisely & SNR, which I dont 

 

4.3 Contrast enhancement 

- compensate under- , overexposure 

- spending intensity range on interesting part of image 

Histogram equalisation: want to have spread intensities 

- use intensities more evenly but still keep relative order 

Use Cumulative intensity probability (Cumulative 

distribution function, CDF) as a mapping function 

- intervals with many intensities are expanded 

- not entirely flat due to discrete nature of histogram 
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5. Feature Detection 

5.1 Edge Detection 

Locating high Intensity Gradient magnitudes 
Locate edges at slopes of point spread function 

Can calculate gradient as convolution (as linear, shift-inv.) 

- prone to noise (need something to smooth first) 

Sobel mask: discrete approximation 

- separable: Derivative + Binomial filter 

- smooth in one direction, derive in other 

- gaps & several pixels wide lines, strongly varying 

 

Locating inflection points 

Search zero-crossings of Laplacians, as edges lie at the 

intensity inflection points; again, use masks 

- sensitive no noise, therefore combine with smoothing 

- find one-pixel thick edges & closed contours 

Difference of Gaussians (DoG): “Mexican hat” filter 

- smooth, then find zero-crossing; approximate derivative 

Canny edge detector 
Use matched filter for optimal detection (low SNR, correct) 

- want to maximize difference between zero-crossings 

- looks like derivative of Gaussians (good approximation) 

- as we also want to have smoothing along the curve 

→ directional derivatives of Gaussian, pick largest one 

- Non-maximum suppression: only take gradient which is 

not smaller than any of the two neighbours 

- Hysteresis threshold: implement lower & upper limit 

→ One-line thickness, can have gaps, very efficient 

5.2 Corner Detection 

Harris Corner Detector 

Distinguish: homogenous areas, edges & corners 

- look at derivatives in 2 directions and decide on them 

Find the directions of minimal & maximal change 

- use the structure tensor / second order moments 

- look for eigenvectors & eigenvalues 

Two small eigenvalues: Plane (no variation) 

One large, one small: Edge 

Two large eigenvalues: Corner (multiple directions) 

       𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡 − 𝑘 ∗ (𝑇𝑟𝑎𝑐𝑒)2         = 

=   𝑓𝑥𝑥𝑓𝑦𝑦 − 𝑓𝑥
2𝑓𝑦

2 − 𝑘 ∗ (𝑓𝑥𝑥 + 𝑓𝑦𝑦)
2
 

 

 

 

 

 

 

 

6. Image decomposition 

Scale space: scenes contain information at different levels 

- develop hierarchical descriptions 

- increase efficiency by working on lower resolutions 

1. Smooth with Gaussian filter (filter high freq.) 

2. Take difference image (→ DoG / Laplacian) 

3. Reduce size of smoothed image (downsample) 

Zero-crossings of Laplacian yield edge information 

For discrete filter 𝑐−1, 𝑐0, 𝑐+1:    𝑐0   ≥   4 𝑐−1𝑐+1 

Unitary image transformations 

Image decomposition into family of orthogonal basis 

images as a linear decomposition 

- concentrate energy in a few components (compress) 

- separable basis images for all dimensions 

- image independent basis is suboptimal (e.g. Dirac/Fourier) 

 

Find weights by projecting image onto base using the 

orthogonality of the basis vectors (larger error with others) 

For well-known bases (sin, cos, Hadamard), only need to 

send weights, otherwise also require sending basis 

Discrete Cosine Transform: best decorrelation, efficient 

- do not have “unnatural” frequencies due to periods by 

eliminating boundary discontinuities 

Hadamard: very efficient, as only “+1”s and “-1”s 
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Principal Component Analysis (PCA) 
Use image-dependent basis (KLT) 

Reduce dimensionality of data while retaining data 

- transform to new, uncorrelated variables 

- collect maximal variance in uncorrelated components 

Rotate into direction of max. correlation & redistribute 

variance / energy mostly there 

- find direction with most variation, then second most etc. 

Covariance matrix: find vector s.t. variance maximized 

- eigenvectors are exactly the vectors we search for 

- higher eigenvalue equals to stronger variation / 

difference in direction corresponding to eigenvector 

- all eigenvectors should be uncorrelated (“unique”), which  

   can be shown to require orthogonality 

Inspection: find outliers as variations in small eigenvalues, 

as we can observe the largest abnormalities there (usually 

none in that direction, so it must be abnormal) 

→ Helps with Compression, Inspection, Classification 

- neighbouring pixels are usually strongly correlated 

- minimal least-square error for truncated approximations 

Problems: very effective, but computationally expensive 

- need to send eigenimages to other party for compression 

- need to compute very large covariance matrices (𝑁2 𝑥 𝑁2) 

- need to specify image statistics 

Independent Component Analysis 
Try to find the most different parts & separate them into 

different images with minimal mutual information 

While PCA minimizes correlation/redundancy (second 

order moment), ICA minimizes the dependence in-

between parts (also higher moments) 

 

7. Segmentation 
Grouping pixels into segments to understand scenes 

7.1 Thresholding 

Separate object and background based on intensity 

- take minimum between two histogram peaks 

- ignores neighbouring pixel, but much smaller size 

Otsu: minimize within-group variance (𝑝1𝜎1
2 + 𝑝2𝜎2

2) 

- can also be used locally for individual patches 

Mathematical Morphology 
reduce noise influence by correcting thresholding 

- only operates on binary images, non-linear 

Dilation: “if one neighbour is white, become white” 

Erosion: “if not entirely white neighbours, become black” 

Remove noise in background (open):  1. Erode, 2. Dilate 

Remove noise in object (close):         1. Dilate, 2. Erode 

Can also do the same with rank-ordered neighbourhood: 

- 𝑖𝑡 = 𝑖1 : Erosion 

- 𝑖𝑡 = 𝑖𝑁 : Dilation 

- 𝑖𝑡 = 𝑖𝑁/2 : Median filtering (edge-preserved smoothing) 

Connected component labelling 

Points are connected if can be reached through  the same 

component; component should be homogenous 

Region growing: to through all pixels which are connected 

and determine whether they belong to the same region 

- determine whether two labels exist for the same 

component so you can combine both to one new 

For two points: 𝑃(𝑖, 𝑗) 𝑎𝑛𝑑 𝑄(𝑘, 𝑙) 

 

7.2 Edge based – Hough transformation 

For predefined shapes & parametric shape models 

- use parameters to display in lower dimensions 

Straight line: defined by position & orientation 

- better: angle & distance to origin (no infinity problem) 

- find points which contribute to find finite lines 

Hough transform: use known parameters to find form 

1. Inspect all points of interest (from edge detection) 

2. For each point, draw the parameter space 

3. Peaks in the counters correspond to forms 

Robust to noise, but requires good peak detection 

- use weighting contributions (e.g. gradient magnitude) to  

   improve robustness of counters to detect correct lines 

7.3 Region based 

Detect homogenous regions & use them as seeds 

Grow regions as long as homogeneity criterion satisfied 

- merge close areas if still inside bounds 

- use “watersheds” to separate areas cleverly 

7.4 Statistical Pattern Recognition 

Unsupervised learning 
Distribute measurements to classes 

- homogeneity within classes & small variance 

K-means: chose K classes and use K centers / means 

- minimizes in-class variance 

1. For each measurement, find “nearest” class 

2. Recalculate class mean and continue 

Maximize the multiplication of the probabilities that each 

measurement can be found in its selected class 
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Supervised Generative models 

Use examples to learn distributions from measurements 

- need to learn correct distributions, features are central 

Segment after maximum a-posteriori (MAP), i.e. maximize 

segmentation given the new measurements using previous 

knowledge (know distribution of classes & examples) 

- “Which class would result in the highest likelihood?” 

𝑝(𝑐𝑖|𝑚) =  
𝑝(𝑚, 𝑐𝑖)

𝑝(𝑚)
=  

𝑝(𝑚|𝑐𝑖) 𝑝(𝑐𝑖)

𝑝(𝑚)
 

Can also do inverse: choose class so that probability of 

measurements are the highest given the class, i.e. 

arg𝑖 𝑝(𝑚|𝑐𝑖)   (Data Likelihood) 

Don’t need class priors for this, as need to estimate 

Markov random fields: probability of class of pixel 𝑃(𝑐𝑗) 

only depends on direct neighbours, not on rest 

Joint distribution: 𝑝(𝑐, 𝑚) =  ∏ 𝑝(𝑚𝑗|𝑐𝑗) 𝑃(𝑐𝑗)𝑀
𝑗=1  

Solve this by defining a Gibbs energy and minimizing it 

- computationally expensive to do in practice 

- alternative: approximate by guessing label & only work  

        on neighbourhoods when sampling individual labels 

Supervised Discriminative models 

Only want function to map from features to classes,  

“learn from examples and apply” ground-truth 

Learning: estimate parameters of the model 

- optimization problem: minimize difference to ground truth 

K-nearest neighbours (KNN): find K nearest neighbours in 

training set and use their labels 

- high dependency on K and the used training set 

- require lots of training samples for accuracy 

Others: Random forests, Neutral networks 

8. Surface: colour & texture 

Luminance: “How much power at 𝝀?” 

Chrominance: "𝑊ℎ𝑖𝑐ℎ 𝜆?” 

8.1 Colour 

CIE primaries: 𝜆1 = 700 𝑛𝑚, 𝜆2 = 546 𝑛𝑚, 𝜆3 = 435 𝑛𝑚 

𝑅𝑖(𝑖) =  ∫ 𝐻𝑖(𝜆) 𝐶(𝜆) 𝑑𝜆 =  ∑ 𝑚𝑗  ∫ 𝐻𝑖(𝜆) 𝑃𝑗(𝜆) 𝑑𝜆

3

𝑗=1

 

𝐻𝑖  : sensitivity of a cone to a specific wavelength 

𝐶𝑖   : received signal strength per wavelength 

Project light source onto 3 numbers → lose information 

- multiple (different) sources can give the same impression 

- use 3 primaries to create the same impression as original 

Tristimulus values:    𝑇𝑗 = 𝑚𝑗/𝑤𝑗              (white is reference) 

Spectral matching curves: tell you strength of all primaries 

to get vision of intended monochromatic wavelength 

- negative values cannot be produced (are simply dropped) 

Chromatic coordinates: normalise so sum of all = 1 

- does not include brightness information anymore 

- can be displayed with two coordinates (no brightness) 

- Y represents luminance 

- can produce all colours inside the triangles / shape 

- can be transformed to faithfully represented perceptual  

  distance between colours everywhere 

Colour constancy 
Environment strongly influences the system & colour 

- perception depends on surroundings 

Patches keep colour even if they reflect differently 

(spectral light source can change but colour remains) 

Patches change colour if surrounding patches change 

 

8.2 Texture 

Characteristics 

- oriented vs isotropic (no dominant orientation) 

- regular vs stochastic (no rules to build from smaller parts) 

- coarse  vs fine 

Fourier features 
Peaks show periodicity (dominant frequencies) 

- low freq. → coarse, high freq. → high 

Coarseness: high or low (look at ring in Fourier space) 

Orientation: directionality in power spectrum 

However, only collects features over entire picture 

Cooccurrence matrix 
Histograms do not capture spatial relationships 

Cooccurence: probability distribution for intensity pairs 

- contain info about intensity at head and tail of vector 

- periodic: everything on main diagonal (𝑖 = 𝑗) 

- can also get energy / entropy / contrast / max. probability 

Filter banks 

Laws filters: fixed convolution filters, very effective 

Gabor filters: Gaussian envelope multiplied with cosine 

- good localization in both domains (actually optimal) 

- can cover entire Fourier domain to get direction/scale 

Eigenfilters: filters adapted to the optimal texture 

- sparse to increase efficiency of large patterns 

- use small Eigenfilters for inspection (see error) 

Stochastic models 

1. Neighbourhood system: compare pixel pairs (Cliques) 

2. Statistical parameter set: histogram for each clique type 

- synthesize texture based on model corresponding to type 
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9. Deformable contour models 

Similar to region growing & watershed 

- here clearly defined shapes, continuity of objects 

- can use fitting techniques to add missing edges 

- use voting methods like Hough to get parameters 

Snakes 
Given an initial contour near the desired object, it should 

evolve to fit the object boundaries exactly 

- enforce continuity of curves 

Elastic band adjusts so that: 

- near image positions with high gradients (edges) 

- satisfy shape “preferences” and priors 

- can be used for continuous deformations (tracking) 

Energy minimization: minimize energy function so that 

- wraps around given object (needs to be outside) 

- stretches & fits to object     (needs to be inside) 

𝐸𝑡𝑜𝑡 = 𝐸𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝐸𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  

Internal: encourage prior shape: smoothness, elasticity, 

known shape prior (only based on snake itself) 

- deformation energy (stretching & bending increases it) 

- helps for missing data (e.g. holes) 

- can be extended to allow for some (known) size to  

  prevent everything from shrinking to nothing 

 

External: encourage contour to fit to image structure 

- attract curve towards interesting features (e.g. curves) 

- larger directional derivative gives less energy (negative) 

 

Shape prior: if known, can penalize if we deviate from a 

known form using an additional energy term 

Energy minimization 

Can also add other energy terms at will: 

- Pressure (Balloons) to push outside / normal 

- Gravity for constant force in preferred direction 

- Interactive force by user for input 

- Distance-based energy (to the nearest edge) gives  

  gradient everywhere and prevents short-sightedness 
 

Partial Differential Equations (PDE) 

Get Euler-Lagrange differential equation & approximate it 

in the discrete case to get a linear equation system 

- to invert matrix, use boundary conditions (closed contour) 

Extension: take temporal development into account 

- kinetic energy: includes the “mass” of the snake 

- friction: use damping coefficient to prevent jumps 

Greedy search: local solution 

For each point, search window around it and move where 

energy function is minimal 

- does not guarantee convergence nor optimality 

- requires decent initialization & correct parameters 

Dynamic programming: Viterbi algorithm 

A single point only affects its neighbours (local effect) 

- again, search locally around initialized snake for optima 

- iterate until each point is in the center of its box, i.e. the 

snake is optimal in the local (constrained) search space 

 

For each position, find optimal (least costly) position at 

next point → minimize over entire chain (globally) 

- for circular snakes, simply fix a single node 

10. Motion Extraction 
Motion might be only cue for segmentation 

10.1 Optical Flow 

For all points, try to find where they will move to 

→ dense motion reconstruction (2D motion vector) 

Try to find projection of 3D vectors onto image 

- apparent motion of brightness patterns 

- wrong if patterns not existent / illumination changes 

Assumption: pixels keep their intensities across frames 

- usually, temporal change is rather slow 

 

Measureable: 𝐼𝑥 =
𝑑𝐼

𝑑𝑥
 , 𝐼𝑦 =

𝑑𝐼

𝑑𝑦
 , 𝐼𝑡 =

𝑑𝐼

𝑑𝑡
 

Unknown: 𝑢 =
𝑑𝑥

𝑑𝑡
 , 𝑣 =

𝑑𝑦

𝑑𝑡
 

1 equation for two unknowns is underdetermined 

- could be solved using higher derivatives of intensity 

- planar intensity profiles can never be resolved (common) 

Aperture problem: only component along gradient can be 

retrieved, the other one is unknown 

Horn & Schunck algorithm 
Add additional smoothness constraint (small changes) 

- reduce error of smoothness and equation above 

- also reduces the influence of noise (damped) 

- Regularization: add extra constraints for bad problems 

Calculus of variations: assume you know solution, we can 

then reformulate the optimization to one over scalar 

Euler-Lagrange equations for each function (𝑢, 𝑣) 

- use iterative methods for PDE & multiple frames 
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10.2 Condensation filter 

Track object which we want to follow 

- shift focus from single pixels to entire object 

 

1. Prediction based on system model 

𝑝(𝑥𝑡|𝑧𝑡−1) =  ∫ 𝑝(𝑥𝑡|𝑥𝑡−1) 𝑝(𝑥𝑡−1| 𝑧𝑡−1) 𝑑𝑥𝑡−1 

2. Update based on measurement model 

𝑝(𝑥𝑡|𝑧𝑡) =
𝑝(𝑧𝑡|𝑥𝑡) 𝑝(𝑥𝑡|𝑧𝑡−1)

𝑝(𝑧𝑡|𝑧𝑡−1)⁄  

Recursive Bayesian filter: track multiple possible states 

- object not a single state but probability distribution 

- “predict and then look if actually there” 

Use Kalman filters: assume linear model, Gaussians 

- only way to analytically solve recursive Bayesian filters 

- exact model, but only very restricted in applications 

CONDENSATION: Conditional Density Propagation 

- discrete samples for performance (can quickly 

reconstruct Gaussian from a few samples) 

- can directly test multiple hypotheses at once 

- requires post-processing of distribution (e.g. avg) 

1. Predict new sample set based on system model 

2. Sample from predicted set with prob. based on 

measurement model (improbables fade out) 

- weights for sampling based on measurements 

- samples can be drawn multiple times, but noise  

   in system model will create different ones 

Other approaches: model-based (shape) & Feature tracking 

11. Feature Extraction 

Feature: property characteristic to pattern / object 

Features deal with large variations in: 

- Viewpoint 

- Illumination 

- Background 

- Occlusions 

- Shape (deformations) 

Global features: can only detect entire object 

Local: can extract part of object (with occlusions) 

11.1 Interest points 

Want to find same points with high precision 

- uniqueness of the patch is important to track 

Sum of Square Differences (SSD): calculate difference in 

intensities between mask can original 

 

 
Study eigenvalues & eigenvectors of H: 

- largest eigenvalue corresponds to direction of big change 

- smallest increase can be seen at small eigenvector 

Shift difference (error) should be large in all directions 

- therefore, minimum of E should be large for all vectors 

- achieved by the smallest eigenvalue of H 

→ take point where even small eigenvalue is still large 

Harris Corner Detector: similar, there just look at both 

eigenvalues instead of simply the smaller one 

11.2 Invariance under geometric change 

Want to discriminate between different interest points and 

search a descriptor for matching it over multiple frames 

- local (planar) patch should be invariant under 

transformation (geometric / photometric change) 

Perpendicular direction 
Only see limited deformations: Similarity 

- rotation 

- translation 

- amplification (scale changes) 

 

Any direction, but far enough distance 
Still assume that object (more or less) in one plane 

- Z distance to object is constant 

2D affine transformation: Affinity 

 

Any direction, any distance 
All distances possible: Projectivity 

Invariances 

More difficult to get invariances for all projectivities than 

similarities: 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠 ⊂ 𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑖𝑒𝑠 ⊂ 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠 

Parallel lines: invariant for sim. & affine, but not project. 

Orthogonality: invariant to sim, but not affine & project. 

Parallelograms: use intensity extrema as edges (same area) 

Can also use invariances to show collinearity, tangency, 

inflections, parallelism (not P) 

Mostly, can assume only similarities (also comp. simple) 

Photometric: use gradient (directions), as often invariant 
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11.3 Examples 

Integrals: Evaluate relative affine invariant parameter 

along two edges by integrating the area along a closed 

curve using the derivative / curvature 

Parallelograms: define it using invariant extrema of a 

function to select edge points, then create a parallelogram 

whose area is constant across images 

Maximally Stable Extremal Regions (MSER) 

Start with intensity extremum, then move intensity 

threshold and watch region grow 

- take regions at threshold where growth is slowest, as 

they indicate strong edges 

- can even order region according to growth speed 

Scale Invariant Feature Transformation (SIFT) 

Dominant orientation selection using Gaussians 

Point of interest: blob-detection over various scales 

- if point is maximum of 27 points (over 3 scales) 

1. Compute image gradients 

2. Build orientation histogram 

3. Find maximum match 

As maximum oriented the same way, metric is rotation-

invariant and therefore does not require corrections 

Match interest points based on descriptors: 

- threshold image gradients over a grid on multiple scales 

- create histogram within block & normalize with Gaussian 

 

12. 3D acquisition 

Passive: uni-directional (using textures & shading 

               multi-directional (using stereo cameras) 

Active: uni-directional (using time-of-flight) 

             multi-directional (using line scanning, light) 

12.1 Passive 

Stereo 
Uses triangulation of two cameras to get 3D position 

- Identical cameras 

- separated by base line b 

 

- coplanar image planes 

- world coords in origin 

𝜌 𝑝 = 𝐾 𝑅𝑡 (𝑃 − 𝐶) 

Increasing b & f increases the depth resolution (more 

sampling), but is less receptive to near objects 

Disparity: horizontal shift between image x coords 

Tilted cameras: allow cameras to be nearer, but still 

sensitive enough in depth in this area 

Epipolar line: projection of viewing ray from 1. Camera 

onto image plane of 2. Camera: point must be on it 

- epipole: projection of 1. Camera’s center onto 2. Camera 

- fundamental matrix F: used to calculate line for other 

Using epipolar lines reduces the search for matching pixels, 

as it has to lie on this plane (search only best there) 

- much quicker and better matching (only 1D now) 

- can actually calculate F if I have at least 8 corresponding  

   points (e.g. using RANSAC) as homogenous system 

Point matching: find pair of points on epipolar lines 

- correlations (deformations, match intensity) 

- feature-based (edges, corners) 

- due to noise, might have to approximate rays 

Structures 
Use homogenous texture to detect how surface is tilted so 

that projection onto image plane looks like it does 

- can do same things with contours (e.g. ellipses/circles) 

Silhouettes 

Use multiple pictures of rotating object to get silhouette 

and combine it to a complete shape 

12.2 Active  

Line scanning: use active triangulation of a laser 

- shine laser on object and get reflection on camera 

- if know orientation of laser & cam, can get point 

- send “plane of light” for guaranteed intersection 

Structured light: project patterns of special shape onto 

scene and observe deformation of patterns 

- Serial binary pattern: get exact position in 2𝑛 lines 

- Coloured patterns: yields 3𝑛 lines 

- distinguishing lines is equal to multiple simultaneous  

   planes projected onto the object → 3D point cloud 

Time-of-Flight: send modulated light signal and measure 

time it requires to travel before returning to the sensor 

- send pulsed: for longer distances 

- measure phase difference: determine small differences 

- still very good over range (compared to stereo / light) 

- requires returned signal (difficult on dark surfaces) 

Photometric stereo: project different light sources 

- light shining from different angles reflects differently 

depending on the source 

- use intensity to determine possible surface orientations 
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13. Tracking 

Feature-based tracking: generic (corners, blobs, regions) 

Model-based tracking: application specific (face, torso) 

Tracking-by-detecting: detect independently in each frame 

Temporal filtering: use model to predict next position 

Particle filters: predict where its going to be & use 

measurements to improve estimation in next frame 

13.1 Feature-based 

Region tracking 

Use constant (known) background to calculate difference 

- doesn’t work if background changes 

- cannot detect if object has same colour as background 

- use snakes around figure to get good shapes 

Mean-shift tracking: track region with colour distribution, 

always going where the center of mass is 

Point tracking 

Look for changes in intensity (optical-flow equation) 

- need to capture fast enough, else local minima 

- need to have a non-zero gradient (aperture problem) 

Use spatial coherence constraint: pixel’s neighbours have 

the same movement (solves aperture problem) 

- solve least squares problem (similar to Harris Corner) 

Temporal tracking 

Requires initial template to know how object looks 

- SIFT: use known descriptors and find them again 

Lucas-Kanade Template Tracker: use iterations to optimize 

warp parameters until we have the best deformation 

 

13.2 Model-based 

Tracking-by-Detection (in 3D) 

Use reference images of object to detect it 

1. Detect Keypoints (strongest feature points) 

2. Build feature descriptors 

3. Match Keypoint descriptors to database 

Use neural networks for class detection (learn descriptors) 

Space Time analysis: collect detections in space and see in 

future and past which path would give best correlation 

Body Articulation 

Pictorial structures: model consists of parts & structure 

- parts: 2D image fragments, single components 

- structure: tells how components are connected 

- minimize energy function to fit everything (“Does it make  

   sense to have this configuration?”) → combine parts 

Use training data to learn normal walking behaviour and 

match it temporally (have periodicity & variations) 

Articulated tracking: use low-dimensional representation 

On-line learning 

If we have good tracking, we can update the template 

during measurements & adapt to gradual changes 

- update criteria to adapt to environment / illumination 

Self-learning: can adapt to wrong things, as teaches model 

itself and can therefore strongly deviate from original 

- can use original model as “anchor” to limit drift 

Context 

Can use supporters to improve tracking of objects 

- occlusions can be found if look at neighbouring objects 

- use scene to infer on past / future 

14. Specific Object Recognition 

13.1 Model-based 

Try to compare image features with features of objects 

stored in database, figuring out type & pose 

- very slow hypothesise-and-verify approach 

- much more difficult in 3D, require projecting onto 2D 

- very compact, can deal with clutter (know model) 

- need to create sample set for each object 

Invariant-based recognition: instead of trying to figure out 

pose, find features which are invariant to it 

- use integral of curvature & compare “histogram” 

13.2 Image-based (appearance) 

Template matching: shift model over image & compare 

- simple change in viewpoint requires lots of templates 

Principal Component Analysis: represent data in lower-

dimensional space keeping most of the variance 

- take lots of pictures from different angles and store 

dominant PCs to compare them to new image 

- can estimate pose based on nearest PC representation 

- large models which cannot easily handle clutter 

- very efficient & easy to produce for lots of models 

13.3 Hybrid techniques 

Euclidean invariant features 

1. Detection: get points of interest (e.g. corners) 

2. Description: Take circular region around it & 

locally calculate region invariants from different 

viewpoints (limited search, as largely invariant) 

3. Matching: Compare image with database & chose 

best one (also see that structure of corners same), 

easily handle cluttering due to local character 

- difficult if uniform texture, as pose not clear 
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Invariance: viewpoint, illumination, background, occlusion 

- start using local invariant features to decrease templates 

Local: no dependence on occlusion & background 

Invariance: robust to change in viewpoint & illumination 

Repeatability: Want to represent them under affine & 

linear photometric changes 

Distinctiveness: should uniquely identify the object 

To be able to compare them locally, the areas should look 

the same (without having to compare images first): 

1. Use Canny edge detector to get shapes 

2. On contours, find extrema of average value 

3. Use them to select parallelograms based on the 

invariant function → same areas 

Using those affine invariant neighbourhoods, we can then 

extract descriptors from them which we will match 

Improvements – Visual words 

Visual words: quantize / cluster descriptors & match them 

hierarchically in a vocabulary tree for speed-up 

1. Create descriptor for many points of interest 

2. Group points of interest clusters to get the word 

3. Use multiple such layers as a hierarchy (faster) 

Inverted file index: get images which correspond to words 

- works very fast for very large databases & vocabularies 

- weight all found references & choose one with the most 

“Find all images in which a visual word occurred” 

K-means clustering: randomly initialize K cluster centers, 

then assign each feature & iteratively improve centers 

RANSAC 

Test configuration of the descriptor matches to verify 

- remove all outliers by testing that fundamental matrix 

exists which can generate the given point distribution 

- test epipolar geometry (rigidity) & projectivities (planar) 

15. Object Category Recognition 

Additional complexity of intra-class variations 

Classification: binary answer “Is it class X?” 

Detection: needs localization “Where is X?” 

15.1 Classification 

Local features cover the same portion of the object in any 

view (only based on local characteristics, no comparison) 

Visual word: a part of an image with similar image content 

- local characteristic: can be a single component of a body 

Specific, textured objects: sparsely sample interest points 

- use a large vocabulary to get best results 

Object categorization: dense sampling over entire image 

- better recognition with smaller vocabulary 

  (general characteristics, not too specialized) 

Bag-of-words: use visual words in image for “histogram” 

- good descriptors to tell apart / compare and get features 

- summarize entire image with content distribution 

- can describe image with single vector, good for learning 

- orderless representation: discards spatial relations 

Classifier: based on a bag-of-words, categorize image into 

given classes based on decision rules 

- performs better than part-based models, as not as relying  

  on sample image, much better adaptability to unseen 

- Nearest neighbour, neural networks, support vector 

Lack of spatial relations (order) can be good and bad 

- no reliance on fixed model, more adaptable to changes 

- does not realise when things “don’t make sense” 

- use visual phrases of frequently co-occurring words 

- keep spatial relation as feature or use grid-based 

Spatial Pyramid Representation: multiple grid layers 

- works well in classifying scenes (but confused when e.g.  

   camera turned, as wrong grid classifications) 

15.2 Detection 

Use sliding window to pass entire image & search for 

features which match previous training samples 

Greyscale: sensitive to illumination variations 

Vector of pixel intensities: sensitive to even small shifts 

Gradient-based: summarize local distribution of gradients 

in histogram (split image into grids to compare parts) 

- locally orderless: invariance to small shifts & rotations 

- contrast-normalization: allows variable illuminations 

Histogram of Oriented Gradients (HOG) 

Represent each image patch with histogram of gradient 

- local normalization allows for comparable results 

- decide in subwindows based on nearest neighbour, CNN 

Integral image: value at (𝑥, 𝑦) is sum of all pixels above 

and to the left; compute any sum in constant time 

- allow extremely fast computation of rectangular filters, as  

   can only take edge points of rectangle & sum / subtract 

AdaBoost: strong classifier by combining many weak ones 

- subsequent learning process: iteratively improve (boost) 

- try to minimize sum of weights of all classifications 

- misclassified ones have high weight (expensive) 

- very fast after being trained & chosen good filters 

- only works well on good 2D shapes which remain rigid 

Use Integral image representation & apply multiple filters: 

1. Evaluate each filter on each example 

2. Sort examples by filter values 

3. Find best threshold for each filter (min error) 

4. Re-weight based on errors, then re-do 

Cascade filters & try to filter out bad image as fast as 

possible to increase efficiency, keeping complex filters last 

- keep false positives rate low, need to drop out fast 
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15.3 Part-based models 

Deformable Part Model (DPM) 

Represent object by its parts 

- parts are detected locally 

- encode spatial structure of the parts as components 

- positions can change (deformable) compared to root 

Sliding window approach using HOG & latent SVM 

- SVM: Support Vector Machine 

- parts are learned automatically by SVM 

“Find best constellation of parts maximizing criteria” 

Reduce if deviate from “ideal” locations of parts 

Star model 

Check on position of parts relative to a central part 

1. Find root of object 

2. Find rest around it 

Implicit Shape Model (ISM) 

Learn an appearance codebook & star-topology structure 

- uses probabilistic Generalized Hough Transform 

- good localization properties, flexible geometric model 

- requires supervised training data to learn code-book 

- no discriminative learning (can have too many parts) 

Predict where the center of the object is based on the 

different parts of the object & a trained code-book: 

1. Find the visual words contained in the image, 

each containing displacement vectors to center 

2. Find the center of the object based on votes 

Convolutional Neural Network (CNN) 

Each layer influences next layer of cells 

- layers are hidden, training influences connections 

 


