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1. Introduction 

Embedded Systems are designed for specialized processes 

- systems exist of dedicated, specialized hardware 

- require design optimizations targeted at intended usage 

  (performance, cost, power consumption, reliability) 

 

Embedded systems (ES): information processing systems 

embedded into a larger product 

- deliver enhanced functionality of existing system 

- work in parallel & distributed target platforms 

- require assured reliability, guarantees & safety  

  (predictability & bounded execution times are critical) 

- usage known at design-time, not programmable by user 

- fixed run-time requirements (at lowest possible cost) 

Often, such systems require real-time processing while still 

offering low power consumption for energy independence 

Multiprocessor system-on-a-chip (MPSoC) 

dedicated system, highly specialized with dedicated HW 

- application characterized by variety of tasks 

General Purpose Computer: broad class of applications 

- programmable by end user, usage might vary over time 

Design Challenges 

Application complexity: want adaptability, but specialized 

- large systems must often provide legacy compatibility 

- mixture of event driven & data flow tasks 

Target system complexity: design space is very large 

- different technologies, processor types, designs 

- use finished system-on-chips, distributed implementation 

Constraints & design objectives 

- cost, power consumption, timing constraints, size,  

  predictability, processing power, temperature 

 

Levels of Abstraction 

Specification: “Computer requires FPGA, DSP, …” 

- Model formally describes selected system properties 

- Consists of data and associated methods 

Synthesis: step from abstraction to real system 

- connects levels of abstraction (refinement) 

- from problem-level description to implementation 

Modelling: connects implementation to problem-level 

- estimation of lower layer properties to improve design 

Structural view: abstract layout of components 

Behavioural view: describes function of component 

Physical view: effective hardware as seen on chip 

Hardware/Software Mapping: partitioning of system to 

programmable components (software) & specialized HW 

- can adapt implementation HW to match problem set 

2. Specification & 

    Models of Computation 

Observer: subject changes state, observer is notified 

- one-to-many dependency between subject & observers 

Synchronized: causes processes to run sequentially 

- solves race conditions, bad performance as not parallel 

- can easily cause deadlocks if circular dependence 

Models of Computation 

Very specific systems for one description of model 

- restricted language, restricted rules 

- offer more possibilities to optimize (more pre-knowledge) 

- ease-of-use & better analysis (can verify correctness) 

- efficient usage, high abstraction level 

Model of Computation: “What happens inside & how interact?” 

- Components & execution model for computations 

- Communication model for information exchange 

Discrete Event model: associate even with (trigger) time 

- search for next even to simulate, independent of realtime 

- allows efficient simulation, as only compute actions 

- VHDL (hardware description language): sensitivity lists 

Finite state machines (FSM): abstract proc. representation 

Differential equation: describe component mathematically 
 

Shared memory: potential race conditions & deadlocks 

- Critical section: must receive exclusive access to resource 

Asynchronous message passing: non-blocking 

- sender does not have to wait until delivered 

- potential buffer overflow if receiver doesn’t read enough 

Synchronous message passing: blocking 

- requires simultaneous actions by both end components 

- automatically synchronizes devices 

- Communication sequential process (CSP): rendez-vous  

   based communication, bot indicate when ready for it 
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Specification requirements 

Hierarchy: dependencies between components 

- Behavioural hierarchy: states, processes, procedures 

- Structural hierarchy: processors, racks, circuit boards 

Timing behaviour: mostly requires to be tightly bound 

State-oriented behaviour: required for reactive system 

Dataflow-oriented behaviour: parts send data streams 

Classical automata: input changes state & output (FSM) 

- complex graphs are difficult to read & analyse by humans 

- Moore: output only depending on state, not input 

- Mealy: output depends on state and input 

2.1 StateCharts (2-25) 

Introduces hierarchies to increase readability: 

- Super-state: can have internal substates 

- Basic state: its super-state is called ancestor state 

OR-super-state: can be in exactly one of the substates 

AND-super-state: is in all of the immediate sub-states 

 

Computation of state sets: traverse tree representation 

- OR-super-states:    addition           of sub-states 

- AND-super-states: multiplication of sub-states 

Timers: indicated by special edges, traverse after timeout 

Besides states, can use variables to keep information: 

- action: variable changes as result of state transition 

  (multiple actions executed simultaneously: (𝑎 ≔ 𝑏; 𝑏 ≔ 𝑎) 

- condition: dependences of state transitions 

 

Simulation phase 

All edge labels are evaluated in 3 different phases: 

1. Effect of external changes & conditions evaluated 

2. Set of transitions to be made is computed 

3. Transitions become effective (simultaneously) 

Can also consider internal events instantaneous 

- external events only considered in stable state, i.e. when  

   no more internal steps are conducted & status remains 

- state diagram only represents stable states 

StateChart solves some, but not all problems: 

- hierarchy allows nesting of OR & AND states 

- can auto-generate C code (but often inefficient) 

- no object-orientation & structural hierarchy 

- not useful for distributed applications 

  (as have asynchronous events & executions) 

Specification & Description Language (SDL): unambiguous 

specification of reactive & distributed systems 

- allows asynchronous message passing, but simultaneous 

- can still have undeterminism if race conditions occur 

  (e.g. if we have multiple inputs for the same FIFO queue) 

2.2 Data-Flow Models (2-55) 

Try to make result independent of time, focus on data 

- processes communicate through FIFO buffers 

- one buffer per connection to avoid time dependence 

All processes run simultaneously with imperative code 

- processes can only communicate through buffers 

- maps easily to parallel hardware / block-diagram specs 

Kahn Process Network 

- read: destructive & blocking (empty queue → busy-wait) 

- write: non-blocking 

- FIFO queues are of infinite size 

- determinate: no random variables, always know which  

  queue I will read next as blocking (cannot peak & decide) 

Random: information known about system & input is not 

sufficient to determine its outputs (undeterministic) 

Determinate: histories of channels depends only on input 

- independent of timing, state, hardware; only function 

Kahn process: monotonic mapping of input to output 

- create output solely based on previous input 

Adding non-determinacy can occur in multiple ways: 

- allow processes to test for emptiness of input channels 

- allow shared channels (read or write ) 

- allow shared data between processes (variables) 

Scheduling Kahn networks 
Responsibility of the system, not the programmer 

- bounded memory (buffers) can overflow if not managed 

Tom Parks algorithm: iteratively increase buffer sizes 

1. Start with network with blocking writes 

2. Use scheduling which doesn’t stall if not all block 

3. Run as long as no deadlocks occur 

4. When deadlock, increase size of smallest buffer 

Finite buffer sizes: limit buffers by introducing reverse 

- if want to send, always need to first read from reverse 

- blocks if already wrote too much, will wait for token 

 

Kahn Process networks offer various advantages: 

- scheduling algorithm does not affect functional behaviour 

- matches stream-based processing & explicit parallelism 

- easy mapping to distributed & multi-processor platforms 

- fuzzy & difficult to implement with balanced rates 

Synchronous Dataflow (SDF): allow compile-time schedule 

- process reads/writes fixed number of token each time 

- uses relative execution rates by solving linear equations 

- requires rank 𝑛 − 1 for 𝑛 processes & sufficient init token 

- period found when same number of initial tokens again 
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3. Mapping Application-Architecture 

Allocation: select components 

Binding: assign functions to components (run what where) 

Scheduling: determine execution order (scheduling) 

Partitioning: allocation & binding 

Mapping:                 binding & scheduling 

Synthesis: implementation of the given specifications 

- uses an underlying model of computation 

Data Flow graph (DFG): show operation & communication 

- nodes: operations; edges: communication / data 

- initial, abstract representation 

Control Flow graph (CFG):  node ≙ line of code 

- includes loops and conditional statements 

Architecture Specification: reflects structure & properties 

- can be done at different abstraction levels 

Mapping relates application & architecture specifications: 

- binds processes to processors 

- binds communication between processes to busses/paths 

- specifies resource sharing disciplines & scheduling 

DFG Application model (3-11): initial specification 

- functional nodes 𝑉𝑃
𝑓

 : tasks, procedure 

- communication nodes 𝑉𝑃
𝑐 : data dependencies 

Architecture model (3-12): describe physical hardware 

- functional resources 𝑉𝐴
𝑓

 : processor, RISC, DSP 

- bus resources 𝑉𝐴
𝑐 : shared bus, PTP bus, fiber 

Specification graph: maps application graph to architecture 

- action of binding abstract functions to actual hardware 

- must occur after allocation 

- each data flow node must have an outgoing edge 

- communication must actually connect correct HW 

4. System Partitioning 

Assign tasks to computing resources (& com to networks) 

Optimal partitioning can be achieved using various ways: 

- compare design alternatives (design space exploration) 

- estimate with analysis, simulation, prototyping 

  (if system parameters are unknown / not determinable) 

Usually, one has conflicting design goals & constraints 

- costs: cost of allocated components (should be minimal) 

- latency: due to scheduling / resource sharing (parallelize) 

- constraints give maximal parameters, try to find solution 

Cost functions: quantitative performance measurement 

- system cost, latency, power consumption, weight, size 

- try to minimize function consisting of all variables 

- linear cost function weights & sums individual costs 

Partitioning: assign 𝑛 objects to 𝑚 locks such that 

- all objects are assigned / mapped (uniquely / once) 

- costs are minimized & all constraints are kept 

Partitioning methods 

Exact methods: get on optimal solution with minimal costs 

- enumeration: iterate through all solutions & compare 

- integer linear program (ILP) 

Heuristic methods: get good solution with high probability 

- Constructive: random mapping, hierarchical clustering 

- Iterative: Kernighan-Lin algorithm, simulated annealing,  

                    evolutionary algorithms 

 

 

 

 

4.1 Integer Linear program (ILP) (4-10) 

An integer programming model requires two ingredients: 

- objective function: linear cost expressions of int variables 

- constraints: limit design space & optimization 

 

IP problem: minimize objective function under constraints 

For partitioning, we can setup the following ILP 

- 𝑥𝑖,𝑘 = {0,1} ∶ determines whether object 𝑜𝑖  in block 𝑝𝑘  

 

Load balancing: maximal sum of all durations should be 

minimized (minimize 𝑇, where 𝑇 ≥ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑃𝑖) 

Additional constraints: can e.g. maximize number of 

objects in a single block 

 

Maximizing the cost function: minimize negative function 

ILPs are very popular for synthesis problems 

- acceptable run-time with guaranteed quality 

   (might be sub-optimal, as only search integer values 

- scheduling can be integrated as well 

- can add arbitrary constraints (however, hard to find) 

- NP-complete (can take long time if too complex) 

- good starting point for designing heuristical optimization 
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4.2 Heuristic methods (4-17) 

Constructive methods 

Try finding a good solution in a single computation 

Random mapping: object is randomly assigned to block 

Hierarchical clustering: stepwise group objects (i.e. assign 

to same blocks) by evaluating the closeness function 

- always merge the two “closest” objects (maximal value)  

- can stop after reaching desired level of clusters 

Iterative methods 

Start at one point and try to improve in steps 

1. Start with an initial configuration 

2. search neighbourhood (similar partitions) and 

select one as a candidate (slightly modified) 

3. Evaluate fitness function of candidate 

4. Stop when criterion is fulfilled / after some time 

Hill climbing: always take the one with higher fitness 

- if no more neighbours better, stop execution 

- local optimum as a best result (depends on initialization) 

- can start at various points to get good (& quick) estimate 

KL: use information of previous runs to find global one 

Simulated annealing: use complex acceptance rule (jump) 

Evolutionary algorithms: complex strategy to add entropy 

Kernighan-Lin algorithm (4-29) 

From all possible pairs of objects, virtually regroup the best 

- from the remaining objects, continue until all regrouped 

- after 𝑛/2 turns, take lowest cost one & actually perform 

External costs 𝐸𝑖 : from node to nodes in other partition 

Internal costs 𝐼𝑖    : from node to nodes in same partition 

Desirability to move: 𝐷𝑖 = 𝐸𝑖 − 𝐼𝑖  

Gain:   𝑔 = 𝐷𝑥 + 𝐷𝑦 − 2 ∗ 𝑐(𝑥, 𝑦) 

Simulated annealing: vary (randomly), always take better-

cost but also probability to take worse-cost neighbours 

- gradual cooling: slowly decrease prob. of accepting worse 

5. Multi-Criteria Optimization 

Network processor: execute communication workload 

- high-performance for network packet processing 

For optimization, we require: 

- task model: specification of the task structure 

- flow model: different usage scenarios 

The implementation defines architecture, task mapping & 

scheduling while considering objectives & constraints 

- objectives: maximize performance, minimize costs 

- constraints: memory, delay, costs, size (conflicting) 

- results in a performance model of the system 

Black-box optimization: can only give input, observe 

output and use objective function to optimize input 

Constraints: only take feasibly solutions, add penalty 

5.1 Multiobjective Optimizations (5-12) 

Different objectives are often not comparable 

- however, there are clearly inferior solutions 

Can use classical single objective optimization methods 

- simulated annealing, Kernighan-Lin, ILP 

- decision making is done before optimization 

- map all dimensions to one using some cost function 

Decision space: feasible set of alternatives 

Objective space: image of decision space using the 

objective function (“evaluated performance”) 

Pareto-dominated: if better or equal for all objectives 

Pareto-optimal: not dominated by any other solution 

Pareto-optimal front: set of pareto-optimal points 

Population-based optimization costs: Pareto-optimal front 

Use evolutionary algorithms to get a set of solutions 

- decision making is done after the optimization 

- function can then weight & map different image points 

5.2 Multiobjective Evolutionary Algos (5-24) 

Evaluate set of solutions simultaneously 

- black-box optimization using randomization (no local min) 

- assumption: better solutions are found near good ones 

1. Choose a set of initial solutions (parent set) 

2. Mating selection: select some out of parent set 

3. Variation: use neighbourhood-operators to  

                   generate a new children set 

4. Determine a union of children & parent set 

5. Environment selection: eliminate bad solutions 

Environmental selection 

Criteria to choose which new solutions to take on: 

- Optimality: take the ones close to (unknown) front 

- Diversity: should cover a large part of objective space 

Hypervolume indicator: should be maximized 

- reference point: should be far away from optimal point 

   (can strongly influence chosen set by weighting area) 

- corresponds to region dominated by pareto-optimal front 

- using dominated points will not increase the area 

- all additional pareto-optimal solutions increase the area 

- a better set (dominates other one) always has larger area  

Choose the solution which increases hypervolume the 

least and throw it out of the parent set for the next round 

Neighbourhood-operators (5-37) 
Work on representations of solutions (e.g. integer vector) 

Completeness: each solution has an encoding 

Uniformity: all solutions are represented equally often 

                      (else  biased to solution with many encodings) 

Feasibility: each encoding maps to feasible solution 

                     (e.g. make it priority, not absolute definition) 

Crossover: take 2 solutions & exchange properties 

Mutation: randomly vary property of solution 

                   (reorder, flip, replace with different part) 
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6. System Simulation 

6.1 System classification 

System: combination of components to perform a function  

                not possible with the individual parts 

Model: formal description of the system (abstraction) 

State: contains all information necessary to determine the 

output together with the input for all future times 

Discrete state models: countable number of states 

- e.g. processors with registers 

Continuous state model: actual analogue signals 

Discrete time model: changes only at discrete times 

Continuous time model: time advances the system  

Events: tuple of a value 𝑣 and a tag 𝑡  

- 𝑡 = 𝑡𝑖𝑚𝑒 :       timed event 

- 𝑡 = 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 : untimed event 

Time-driven simulation: time is partitioned into intervals 

- simulation step is performed even if nothing happens 

Event-driven simulation: discrete or continuous time base 

- evaluation & state changes only at occurrences of events,  

Discrete Event system (DES): event-driven system 

- state evolution depends entirely on occurrence of 

discrete events over time (not by the evolution of time) 

- signals / streams: ordered and/or timed events 

- processes: functions which act on signals or streams 

6.2 Discrete event simulation (6-16) 

Modules describe the entire system & allow separation: 

- Behaviour: described using logic and algebraic expression 

- State: persistent variables inside these modules 

- Communication: done through ports via signals 

- Synchronization: done through events and signals 

Event list: queue of events, processed in order 

- organized as a priority queue (may include time) 

Simulation time: represents current value of time 

- during discrete event, clock advances to next event time 

System modules: model subsystems of simulated system 

- process events, manipulate event queue & system state 

- sensitivity list indicates whether module is concerned 

Zero duration virtual time interval: delta-cycle (𝜹) 

- prevents the cause & effect events to coincide at the  

   same time instance (if they occur instantly, outcome  

   depends on ordering & race conditions occur) 

- orders “simultaneous” events within simulation cycle 

SystemC (6-23) 

System-level modelling language to simulate concurrent 

executions in embedded systems (HW, communication) 

- event-driven simulation kernel for discrete-event models 

Processes are the basic units of functionality: 

- SC_THREADS: called once, run forever (block if no input), 

  can be suspended using 𝑤𝑎𝑖𝑡() / started with 𝑛𝑜𝑡𝑖𝑓𝑦() 

- SC_METHOD: event-triggered, require sensitivity list 

  execute repeatedly when called without being suspended 

Channel: contained for communication & synchronization 

- can have state (FIFOs), implement one or more interfaces 

Check that modules have sufficient initial tokens! 
 

6.3 Simulation at high abstract levels 

(Untimed) functional level: model functionality 

- C/C++, Matlab: shared variables & messages 

Transaction level: early SW development, timing 

- SystemC: method calls to channels 

Register transfer / Pin level: HW design & verification 

- Verilog, VHDL: wires and registers 

7. Design Space Exploration 

Optimal design criteria 

Mappings: all possible bindings of tasks to architecture 

Request: operational cost of executing given task 

Binding: subset of mappings so that every task is bounded 

to exactly one allocated resource (actual implementation 

Design constraints 

Delay constraints: maximal time a packet can be processed 

Throughput maximization: maximize packets per second 

Cost minimization: implement only numbered resources 

Conflicting usage scenarios: should be good for mixture 

 

Simple analysis model 

Optimize both to minimize maximal processor & bus load 

- want to spread load over all CPUs, but not too much 

- get numbers using static parameters, functional 

simulation & instruction-set simulation (using benchmarks) 

 



6 
 

8. Performance Estimation 

High-level estimation: just look at the functional behaviour 

- short estimation time, implementation details irrelevant 

- limited accuracy, e.g. no information about timing 

Low-level estimation: simulate all physical layers 

- higher accuracy, deeper analysis possible 

- long estimation time, need to define exactly 

We use performance estimation to check: 

- Validation of non-functional aspects: verification 

- Design space exploration: allows optimization 

Exploration: reconfigure system and evaluate performance 

Performance metric: function giving a quantitative 

indication on system execution, should be representative 

- time, power, temperature, area, cost, SNR, processing 

Evaluation difficulties 

Non-determinism: computation (parallel), communication 

(interference), memory (shared resources), interactions 

Cyclic timing dependencies: internal streams interact on 

computation & communication, influences characteristics 

Uncertain environment: different scenarios (cached, pre-

emption enabled), worst-case vs. best-case inputs 

Various resource availability & demands: request depend 

on precise circumstances, where & when it is executed 

- run-time of functions can vary depending on state 

 

Estimation methods (8-19) 

Measurements: use prototype to measure performance 

Simulation: develop program which runs system model 

Statistics: develop statistical abstraction & derive statistics 

Formal analysis: mathematical abstraction to compute 

formulas which describe the system performance (WC) 

 

Analytic models: abstract system & derive characteristics 

- performance measures are stochastic values (e.g. avg) 

- can use for worst-case/best-case evaluation (bracketing) 

Static analytic models: use algebraic equations & relations 

between components to describe properties 

- fast & simple, but generally inaccurate modelling 

   (scheduling, overhead, resource sharing neglected) 

Dynamic analytic model: extend static models 

- implement non-determinism in run-time & processing 

- describe e.g. resource sharing (scheduling & arbitration) 

Simulation: implement a model of the system (SW, HW) 

- include precise allocation, mapping, scheduling 

- combines functional simulation & performance analysis 

- performance evaluation by running the entire program 

- difficult to focus on part, but enables detailed debugging 

- one run only evaluates for a single simulation scenario 

   (specific input trace & initial system state) 

- complex setup & extensive runtimes, but accurate 

Trace-based simulation: separate functional & timing beh. 

- trace only determined by functional application 

- disregards timing (only focus on functional behaviour) 

- faster than low-level simulation, as abstracting as events 

- allows evaluation on multiple architectures using the  

  same event graph on “virtual machines” 

 

9. WCET Analysis 

Hard Real-Time Systems: embedded controllers are 

expected to finish their tasks reliably within time bounds 

Worst-Case Execution Time (WCET): upper bound on the 

execution time of a task, should be kept minimal 

- upper bound consists of all pessimistic consumptions 

- can be approximated with exhaustive measurements 

Usually, try to compute by analysing program structure 

- modern processers exploit parallelism, therefore 

execution time not simply sum of single instructions 

- out-of-order execution by leveraging independence 

- caches, pipelines, branch prediction, speculation 

- difference between BCET and WCET can be gigantic 

Timing Accident: cause for increase of execution time 

- execution is increased by timing penalty 

- causes: cache miss, pipeline stalls, branch misprediction,  

                 bus collisions, DRAM memory refresh, TLB miss 

Micro-architecture analysis: use abstract interpretation 

- exclude as many timing accidents as possible 

- determine WCET for basic blocks by analysing HW 

Worst-case Path Determination: maps control flow graph 

to an ILP to determine upper bound & associated path 
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9.1 Program Path Analysis (9-18) 

Determine sequence of instructions which is executed in 

the worst-case scenario (i.e. resulting in longest runtime) 

- we know WCET for basic block from static analysis 

- number of loops must be bounded 

Basic block: sequence of instructions where control flow 

enters at beginning and exits at end without stopping in-

between or branching (just linear sequence, SISO) 

Determining the first instructions of basic blocks: 

- The first instruction 

- Targets of (un-)conditional jumps 

- Instructions that follow (un-)conditional jumps 

The WCET can then be calculated as the sum of the blocks: 

𝑊𝐶𝐸𝑇 =  ∑ 𝑐𝑖  𝑥𝑖

𝑁

𝑖=1

 ,
𝑐𝑖 ∶ 𝑊𝐶𝐸𝑇 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘  𝑖
𝑥𝑖 ∶ # 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑖

 

The number of executions of a block 𝑥𝑖  is given by: 

- structural constraints: given by flow equations 

- additional constraints: extracted from program code 

  (e.g. number of loop iterations, logical connections) 

The entire ILP can then be written as: 

 

 

 

9.2 Value Analysis (9-29) 

Abstract Interpretation (AI): don’t work on actual variables, 

but consider possible variable intervals (abstract values) 

- can give exact WCET by considering all possible inputs 

- supports correctness proofs 

Value analysis is used to provide: 

- Access information to data-cache/pipeline analysis 

- Detection of infeasible paths 

- Derivation of loop bounds 

9.3 Caches (9-35) 

Provide fast access to stored data without accessing main 

memory, as speed gap between CPU & memory is large 

Assumes local correlation between data access: 

- program will use similar data soon (many hits) 

- program will reuse items (instructions, data) 

- access patterns are evenly distributed across the cache 

4-way set associative cache (9-39): store 4 tags / cache line 

Least Recently Used (LRU): replace oldest block (ages) 

We can distinguish two statically cache contents analyses: 

Must analysis: Worst-case, “At which position at least?” 

- each predicted cache hit reduces WCET (always hit) 

- “union + maximal age”: where is my worst position? 

May analysis: Best-case, “At which position at most?” 

- each predicted cache miss increases BCET (always miss) 

- “union + minimal age”: where is my best position? 

Loop unrolling: improve analysis by limiting influence of 

state before the loop by executing it first as 𝑖𝑓 

- more optimistic result for WCET, pessimistic for BCET 

 

9.4 Pipelines (9-54) 

Ideal case: finish 1 instruction per cycle 

Instruction execution is split into several stages 

- multiple instructions can be executed in parallel 

- may execute instructions out-of-order 

Pipeline hazards 

Data hazards: operands not yet available 

                         (data dependencies, cache miss) 

                         (solve with pipeline stall & forwarding) 

Resource hazards: consecutive instr. uses same resource 

Control hazards: conditional branches (requires flush) 

Instruction-cache hazards: instruction fetch causes miss 

 

Cache analysis: prediction of cache hits (data / instr.) 

Dependence analysis: analysis of data/control hazards 

Resource reservation tables: analysis of resource hazards 

Simulation 

Processor: consider CP as a big state machine with initial 

state 𝑠, instruction stream 𝑏 and trace 𝑡 

Abstract pipeline: limit simulation to pipeline 

- may lack information, e.g. about cache contents 

Assuming local worst-case at every step leads to the global 

worst-case result (might be longer than in real-world) 

- timing anomalies might however counteract this 

  assumption (may be faster if delayed in beginning) 

- can also join sets of states under this assumption 

   (always keep most pessimistic look, as always safe) 

- always assume cache misses where not excluded 
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10. Performance Analysis of 

Distributed Embedded Systems 

Embedded system (ES) 

- Computation, Communication, Resource interaction 

- build a system from subsystems meeting requirements 

10.1 Real-time calculus (10-11) 

Abstract systems to calculate evaluation for all possible 

executions at once (entire behaviour in one analysis) 

Min-plus 

- used for interval arithmetic (abstract values) 

 

Infimum: greatest element (not necessarily in set) which is 

less or equal to all other elements of the set 

Metrics (10-17) 

Data streams         𝑅(𝑡) : number of events   in [ 0, 𝑡) 

Resource streams 𝐶(𝑡) : available resources in [ 0, 𝑡) 

Arrival curve 𝛼 = [ 𝛼𝑙, 𝛼𝑢 ] 

- max / min arriving events in any interval of length ∆ 

Service curve 𝛽 = [ 𝛽𝑙 , 𝛽𝑢 ] 

- max/min available service in any interval of length ∆ 

Common event pattern: specified by parameter triple 

-  𝑝 : period 

-  𝑗  : jitter 

-  𝑑 : minimum inter-arrival distance of events 

Ex. Periodic with Jitter: (10-21) 

Ex. TDMA Resource: (10-24) 

 

Greedy Processing Component (GPC) 

If tasks are available & resources ready, always use them 

- assume preemptable tasks (can stop anytime if 𝐶(𝑡) = 0) 

- processes are only restricted by limited resources 

- are processed one after the other in FIFO order 

 

Computation: task instance 𝑅(𝑡), computing resource 𝐶(𝑡) 

Communication: data packet 𝑅(𝑡), bandwidth 𝐶(𝑡) 

 

𝑢 ∶ last time the buffer was completely empty (𝑅′ = 𝑅) 

- for 0 ≤ 𝑡′ ≤ 𝑡, we constantly use all available resources 

𝑅′(𝑡) − 𝑅′(𝑢) ≤ 𝐶(𝑡) − 𝐶(𝑢) 

𝐶′(𝑡) =  sup
0≤𝑢≤𝑡

{ 𝐶(𝑢) − 𝑅(𝑢) } 

Conservation law: 𝑅′(𝑡) ≤ 𝑅(𝑡)  ∀ 𝑡 

Time               domain: cumulative functions 

Tine-interval domain: variability curves 

 

Time-interval domain relations (10-32) 

 

Using convolution, we can describe the relation as: 

 

 

 

Delay & Backlog (10-37): 

- backlog: max. nr of components in queue / vertical diff. 

- delay: max. time in queue / horizontal difference 

 

10.2 Modular Performance Analysis (10-40) 

 

Different scheduling mechanisms: (10-41) 

- Fixed priority/Rate monotonic, EDF, Round Robin, TDMA 
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11. Various 

Application Specific Instruction Set 

- specialized, but still programmable (efficiently) 

- HW with custom instruction set & operations 

Translation Look-aside buffer (TLB): stores recent 

translation of virtual to physical memory 

“Traffic shaper”: guarantee min. delay between tasks 

- spreads bursts to minimize influence on other tasks 

 

 

 

 


