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Fundamentals of Wireless Comm. 

Andreas Biri, D-ITET                              12.07.17 

1. Introduction 

 

Modulation (frequency shift to carrier frequency): 

- enables multiple (slightly shifted) simultaneous channels 

- better channel characteristics (less absorbtion) 

Capacity: maximum rate with error-free communication 

                  (asymptotically in the block length; spread  

                   redundancy far enough to not affect all) 

Small-scale fading: displacement in magnitude of 

wavelength results in significant field changes 

Large-scale fading: due to shadowing & distance 

Systems overview 

Time shifts: due to multipath propagation 

Frequency shift: due to Doppler shifts as objects include  

                              movement and change location over time 

Linear time-variant (LTV): time & frequency shifts 

Linear time-invariant (LTI): only time shifts, no freq. shifts 

𝑟(𝑡) = ℎ(𝜏) ∗ 𝑥(𝑡) , ℎ(𝑡, 𝜏) = 𝑔(𝜏) 

Linear frequency-invariant (LFI): only freq. shifts, no time 

- modulation of input signal 

𝑟(𝑡) = 𝑚(𝑡)𝑥(𝑡), 𝑆𝐻(𝜏, 𝑣) = 𝑀(𝑣)𝛿(𝜏) 
 

                                          ℎ(𝑡, 𝜏)    = 𝑚(𝑡) 𝛿(𝜏) 

2. Wireless Fading Channels 

Transmit signal with complex envelope 𝑥(𝑡) 

𝑥𝑐(𝑡) = 𝑅𝑒 { 𝑥(𝑡) 𝑒
𝑗2𝜋𝑓𝑐 𝑡  } 

Received signal due to multipath propagation 

𝑟𝑐(𝑡) =  ∑𝛼𝑛(𝑡) 𝑥𝑐(𝑡 − 𝜏𝑛(𝑡))

𝑁

𝑛=0

 

𝛼𝑛 : path gain ;    𝜏𝑛 : path delay 

Equivalent baseband signal: 

𝑟(𝑡) =  ∑𝛼𝑛(𝑡) 𝑒
−𝑗2𝜋𝑓𝑐 𝜏𝑛(𝑡) 𝑥(𝑡 − 𝜏𝑛(𝑡))

𝑁

𝑛=0

 

Doppler shift: 𝑣𝑛 = −𝑓𝑐 𝜏𝑛̅̅ ̅ 

Use approximations which hold if 

𝐵 𝑓𝑐⁄   ≪   1/|𝑣𝑛𝑡| 

With bandlimited signals, we can describe it as 

𝑟(𝑡) =  ∑𝑎𝑛 𝑥(𝑡 − 𝜏𝑛) 𝑒
𝑗2𝜋𝑣𝑛𝑡

𝑁

𝑛=0

 , 𝑎𝑛 = 𝛼𝑛 𝑒
−𝑗2𝜋𝑓𝑐𝜏𝑛  

 

         =  ∫∫𝑆𝐻(𝜏, 𝑣) 𝑥(𝑡 − 𝜏) 𝑒
𝑗2𝜋𝑣𝑡  𝑑𝜏𝑑𝑣

𝑣𝜏

 

(Delay-Doppler) Spreading function: influence of scatterers 

𝑆𝐻(𝜏, 𝑣) =  ∫ℎ(𝑡, 𝜏) 𝑒
−𝑗2𝜋𝑣𝑡  𝑑𝑡

𝑡

= ℱ𝑡→𝑣{ℎ(𝜏, 𝑡)} 

Time-varying impulse response 

ℎ(𝑡, 𝜏) =  ∫𝑆𝐻(𝜏, 𝑣) 𝑒
𝑗2𝜋𝑣𝑡  𝑑𝑣

𝑣

= ℱ𝑣→𝑡
−1 { 𝑆𝐻(𝜏, 𝑣)} 

𝑟(𝑡) =  ∫ℎ(𝑡, 𝜏) 𝑥(𝑡 − 𝜏) 𝑑𝜏

𝜏

 

Linear time-invariant (LTI): time shifts, no frequency shifts 

ℎ(𝑡, 𝜏) = 𝑔(𝜏) ,     𝑆𝐻(𝜏, 𝑣) = 𝑔(𝜏) 𝛿(𝑣) 

Linear time-variant (LTV): both time & frequency shifts 

                                               (do not commute in general) 

- time shifts:           multipath propagation 

- frequency shifts: movement of Tx, Rx or scatterers 

Time-varying transfer function (Weyl symbol) 

𝐿𝐻(𝑡, 𝑓) =  ∫ℎ(𝑡, 𝜏) 𝑒
−𝑗2𝜋𝑓𝜏  𝑑𝜏

𝜏

= ℱ𝜏→𝑓{ ℎ(𝑡, 𝜏)} 

 

2.2 Tapped Delay-line Interpretation 

𝑟(𝑡) =  ∫ ℎ(𝑡, 𝜏) 𝑥(𝑡 − 𝜏) 𝑑𝜏

𝜏𝑚𝑎𝑥

0

 

 

For digital tapped delay: 𝑟[𝑛] =  ∑ ℎ[𝑘] 𝑥[𝑛 − 𝑘]𝑘  
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2.3 WSSUS Channels 

Wide-sense stationary (WSS): statistics does not change 

- all tap weights zero-main stationary with respect to time 

Uncorrelated scattering (US): scattered paths uncorrelated 

𝑅ℎ(𝑡, 𝑡
′; 𝜏, 𝜏′) = 𝑅ℎ(𝑡 − 𝑡

′, 𝜏) 𝛿(𝜏 − 𝜏′) 
  

                           = 𝐸[ℎ (𝑡, 𝜏) ℎ∗(𝑡′, 𝜏′) ] 

𝑅𝐻(𝑡, 𝑡
′; 𝑓, 𝑓′) = 𝑅𝐻(𝑡 − 𝑡

′, 𝑓 − 𝑓′)          
 

                            = 𝐸[𝐿𝐻(𝑡, 𝑓) 𝐿𝐻
∗ (𝑡′, 𝑓′)] 

𝐿𝐻 is both wide-sense stationary in both time & frequency 

(US in delay ↔ WSS in freq.; US in Doppler shifts ↔ WSS in time) 

Scattering function: average output power of the channel 

                             (depending on Doppler freq. 𝑣 and delay 𝜏) 

𝐸[ 𝑆𝐻(𝜏, 𝑣) 𝑆𝐻
∗ (𝜏′, 𝑣′)] = 𝐶𝐻(𝜏, 𝑣) 𝛿(𝜏 − 𝜏

′)𝛿(𝑣 − 𝑣′) 

 

 
 

 

2.4 Parameter Characterization for WSSUS 

Path loss: fraction of input energy arriving at receiver 

𝑃 =  ∫∫𝐶𝐻(𝜏, 𝑣) 𝑑𝜏𝑑𝑣

𝑣𝜏

 

Time dispersiveness 

Power-delay profile (PDP): avg. reflected power at delay 𝜏 

𝑞(𝜏) =  ∫𝐶𝐻(𝜏, 𝑣) 𝑑𝑣

𝑣

  ≥ 0 

Multipath delay spread: 

𝜎𝜏 = √
1

𝑃
 ∫(𝜏 − 𝜏̅)2 𝑞(𝜏) 𝑑𝜏

𝜏

 

Coherence bandwidth 𝑩𝒄: width of 𝑅𝐻(0, ∆𝑓) =  ℱ𝜏{𝑞(𝜏)} 

 

Frequency Flat fading:  𝐵 ≪ 𝐵𝑐  

(Freq. invariant: all freq. scaled with same factor) 

Frequency-selective fading: factor depends on frequency 

𝐵𝑐 ≈
𝑐𝑜𝑛𝑠𝑡

𝜎𝜏
  

𝐵𝑐  : spread in frequency;     𝜎𝜏 : spread in time 

Because of the uncertainty principle, both cannot be small 

( small freq. domain spread ↔ large time domain spread) 

With flat fading, the frequency does not matter and we 

have a (time-selective) modulation of the channel: 

𝑟(𝑡) ≈ 𝑐(𝑡) 𝑥(𝑡) , 𝐿𝐻(𝑡, 𝑓) ≈ 𝑐(𝑡) 

Frequency dispersiveness 

Power-Doppler profile: average reflected power at 𝑣 

𝑝(𝑣) =  ∫𝐶𝐻(𝜏, 𝑣) 𝑑𝜏

𝜏

 ≥ 0 

Doppler spread: spectral broadening through movement 

𝜎𝑣 = √
1

𝑃
 ∫(𝑣 − 𝑣̅)2  𝑝(𝑣) 𝑑𝑣

𝑣

 

Coherence time 𝑻𝒄: width of 𝑅𝐻(∆𝑡, 0) 

𝑇𝑐 =
𝑐𝑜𝑛𝑠𝑡

𝜎𝑣
 

Slow fading:  𝑇𝑠𝑖𝑔𝑛𝑎𝑙 ≪ 𝑇𝑐  

(Time invariant: entire signal sees same channel) 

Fast fading: channel changes substantially over signal 

 

1. “Flat” (𝐵 ≪ 𝐵𝑐 , 𝑇 ≪ 𝑇𝑐): 𝑟(𝑡) = 𝑐 ∙  𝑥(𝑡)           

2. “Frequency-selective” (LTI): 𝑟(𝑡) = (ℎ ∗ 𝑥)(𝑡) 

3. “Time-selective” (LFI):   𝑟(𝑡) = 𝑚(𝑡)𝑥(𝑡) 

4. 𝐵 > 𝐵𝑐 , 𝑇 > 𝑇𝑐:      𝑟(𝑡) = ∫ ∫ 𝑆𝐻(𝜏, 𝑣) 𝑥(𝑡 − 𝜏) 𝑒
𝑗2𝜋𝑣𝑡

𝑣𝜏
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2.5 Probabilistic Characterization of Fading 

Rayleigh fading (non-LOS): 

ℎ(𝑡, 𝜏) ~ 𝐶𝑁(0, 𝜎2) 

Magnitude: Rayleigh distributed 

𝑓|ℎ(𝑡,𝜏)|(𝑧) =
2𝑧

𝜎2
 𝑒
− 
𝑧2

𝜎2 

Squared magnitude: exponentially distributed 

𝑓|ℎ(𝑡,𝜏)|2(𝑥) =
1

𝜎2
 𝑒
−
𝑥
𝜎2 , 𝑥 ≥ 0 

Ricean fading (LOS case): 

ℎ(𝑡, 𝜏) ~ 𝜇 + 𝐶𝑁(0, 𝜎2) 

Ricean K-factor: 𝐾 =  |𝜇|2/𝜎2 

2.7 Discretized Channel Models 

Use sampling theorem to get countably infinite number of 

parameters for discretized channel description 

Input frequency limitation:  band-limited to B 

Output time limitation:      maximal signal duration T 

Received signal consists of time-frequency shifted versions 

of a band-limited version of the input signal 

The corresponding received signal can be constructed with 

 

Most of the volume of 𝑆𝐻̅̅ ̅ is supported over rectangle 

[−𝐷 −
1

2𝐵
 , 𝐷 +

1

2𝐵
 ]  𝑥 [ −𝑉 −

1

2𝑇
 , 𝑉 +

1

2𝑇
 ]  

𝑉: max. Doppler shift ;   𝐷: max. time shift / delay 

Complete channel characterization with finite parameters 

Discrete-time channel model 

 

Input signal: bandlimited to                [−𝐵, +𝐵] 

                       Doppler shift limited to [−𝑉, + 𝑉] 

Received signal: bandlimited to     [−𝐵 − 𝑉, 𝐵 + 𝑉] 

𝒉(𝒕, 𝝉) bandlimited to [−𝑩,𝑩] with respect to 𝝉, 

as 𝐿𝐻(𝑡, 𝑓) bandlimited with respect to 𝑓 

Therefore, we can sample the received signal with  

𝑓𝑠 = 2(𝐵 + 𝑉), 𝑤ℎ𝑒𝑟𝑒 𝑓0 = 2𝐵 

 

Additive White Gaussian Noise (AWGN) 

Assume complex zero-mean additive white Gaussian noise 

- sampled as well with 𝑓𝑠 

- white → independent over time 

- independent of the paths, influence usually at receiver 

𝑦[𝑛] =  ∑ ℎ[𝑛,𝑚] 𝑥[𝑛 − 𝑚] + 𝑤[𝑛]

∞

𝑚=−∞

 

 

2.7 Identification of LTV Systems 

Want to extract ℎ(𝑡, 𝜏) from response 𝑟(𝑡) to a known 

probing signal 𝑥(𝑡) → send pilot first 

LTI systems: just use Dirac pulse 𝑥(𝑡) =  𝛿(𝑡) 

(need to observe output long enough to identify system) 

For LTV systems, this delivers ℎ(𝑡, 𝜏) only along a 45° line: 

𝑟(𝑡) =  ∫ℎ(𝑡, 𝜏) 𝑥(𝑡 − 𝜏) 𝑑𝜏

𝜏

= ℎ(𝑡, 𝑡) 

Assume 𝑆𝐻(𝜏, 𝑣) supported on [−𝜏0, 𝜏0] 𝑥 [−𝑣0, 𝑣0] 

→ ℎ(𝑡, 𝜏) supported on [−𝜏0, 𝜏0] in 𝜏 , 

                  bandlimited to [−𝑣0, 𝑣0] with respect to 𝑡 

Solution: Dirac train to track evolution of impulse response 

𝑥(𝑡) =  ∑ 𝛿(𝑡 − 𝑙 𝑡0)
∞

𝑙=−∞
 , 𝑡0 ≥ 2𝜏0 

𝑟(𝑡) =  ∑ ℎ(𝑡, 𝑡 − 𝑙 𝑡0)
∞

𝑙=−∞
                         

 

To reconstruct ℎ(𝑡, 𝜏) for all values from the known 

samples in 𝑡 −direction, we require a sampling of 

2𝜏0 ≤ 𝑡0  ≤  
1

2𝑣0
, 𝑏𝑎𝑛𝑑𝑙𝑖𝑚𝑖𝑡𝑒𝑑 𝑡𝑜 [−𝑣0, 𝑣0] 

For such a solution to exist, we therefore require 

4𝜏0𝑣0 = ∆𝐻  ≤  1 

That is, support area of 𝑺𝑯(𝝉, 𝒗) must be smaller than 1 

Probing fraction: 𝐴 = 4𝜏0𝑣0 of signal space dim. for probing 

Probing signal: design as orthogonal as possible (else noise) 
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3. Diversity 

Send signals that carry same information over multiple 

independently fading paths → more reliable reception 

Small coherence BW: If I send info over multiple 

frequencies, one might fail but others will not 

→ diversity: decreased chance of failure 

3.1 Detection in Rayleigh Fading Channel 

Non-coherent detection 

For a flat-fading channel (LFI), we get 

𝑦[𝑚] = ℎ[𝑚]𝑥[𝑚] + 𝑤[𝑚] 

𝑤[𝑚] ~ 𝐶𝑁(0, 𝑁0) , ℎ[𝑚] ~ 𝐶𝑁(0,1) 

Need either different magnitudes or orthogonal symbols 

Log-likelihood ratio 

𝛬(𝑦) = ln ( 
𝑓(𝑦 | 𝐻0)

𝑓(𝑦 | 𝐻1)
 )    

𝐻̂ = 𝐻2
≥
<

𝐻̂ = 𝐻1

 

Optimum noncoherent detection projects the received 

signal vectors onto each of the two possible transmitted 

messages and compares the magnitudes squared 

𝑃(𝑒) =  
1

2(1 + 𝑆𝑁𝑅)
 

Coherent detection 

𝑃(𝑒| ℎ ) =  𝑄 ( √2 |ℎ[0]|2 𝑆𝑁𝑅 ) 

Averaging over random channel 

𝑃(𝑒) =
1

2
(1 − √

1

1 +
1
𝑆𝑁𝑅

 )  ≈
1

4 𝑆𝑁𝑅
=
1

2
 𝑃(𝑒)𝑛𝑜𝑛−𝑐𝑜ℎ. 

AWGN channel 

𝑃(𝑒) = 𝑄( √2 𝑆𝑁𝑅  )  ~ 𝑒−𝑆𝑁𝑅  

In comparison to non-coherent & coherent detection with 

inverse decay with SNR, the error probability in the AWGN 

channel decays exponentially with the SNR 

In a fading channel, error performance is poor not because 

the channel is unknown at the receiver, but because the 

probability that the channel fades is high 

𝑃(𝑑𝑒𝑒𝑝 𝑓𝑎𝑑𝑒) = 𝑃 ( |ℎ[0]|2 <
1

𝑆𝑁𝑅
)  ≈  

1

𝑆𝑁𝑅
 

If the channel gain is much larger than 
1

𝑆𝑁𝑅
 (no deep fade), 

conditional error probability decays exponentially in SNR 

At high SNR, typical error is due to small channel gain and 

not because of large additive noise 

𝑃𝑒 =  𝑃𝑒 | "𝑑𝑒𝑒𝑝 𝑓𝑎𝑑𝑒" ∗ 𝑃𝑑𝑓   +   𝑒
−𝑆𝑁𝑅 ∗ 𝑃𝑛 𝑑𝑓 

→ Diversity: send information over multiple channels, so 

that at least one is not in deep fade and can be used 

- time, frequency & space (antenna) diversity 

- macro (cellular networks) & multi-user (scheduling) 

3.2 Time Diversity 

Averaging over the fading of the channel over time 

Coherence time usually around 10-100 symbols 

Interleaving: ensure symbols are transmitted over 

independently fading branches 

Coherent detection: project onto known channel vector 

→ 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑓𝑖𝑙𝑡𝑒𝑟 : Maximum Ratio Combiner (max SNR) 

- weight received signal proportional to signal strength 

- align the phases in the summation (reverse phase shift) 

𝐿 independently fading branches are coherently combined 

and result in an array & diversity gain 

𝑃(𝑒 |ℎ) = 𝑄 ( √2 ‖ℎ‖2 𝑆𝑁𝑅 ) 

‖ℎ‖2 = ∑|ℎ[𝑙]|2
𝐿−1

𝑙=0

 

Sum of the squares of 2𝐿 independently real Gaussian RV 

chi-square distribution with 2𝐿 degrees of freedom (𝒳2𝐿
2 ) 

𝑓𝒳2𝐿
2 (𝑥) =  

1

(𝐿 − 1)!
 𝑥𝐿−1 𝑒−𝑥  , 𝑥 ≥ 0 

With those diversity branches, we less error probability, as 

we are less in “deep fade” (all channels would have to be): 

log 𝑃(𝑒) ≈  −𝐿 log 𝑆𝑁𝑅  + 𝐶 

𝑃 ( ‖ℎ‖2 <
1

𝑆𝑁𝑅
 ) ≈

1

𝐿!
 
1

𝑆𝑁𝑅𝐿
 

Repetition coding: already achieves diversity gain 

- does not efficiently use degrees of freedom in the system 

Rotation code: send rotated QAM signal 

- rotated QAM so faded channel still allows detection 

- calculate Pairwise Error Probability (PEP) 

𝑃(𝑒) =
48

min
𝑖,𝑗
(𝛿𝑖𝑗)

 𝑆𝑁𝑅−2 =
1

𝑐
 𝑆𝑁𝑅−𝑑 

𝑑 ∶ diversity order, minimum SNR exponent 

𝑐 ∶ coding gain, minimum 𝑐𝑖  in front of PEP 

Maximize the minimum product distance for the best error 

probability (minimal over all is important) 

Rotation-based constellation has an increased minimum 

product distance than its comparable 4-PAM repetition-

based code, as it spreads the codewords in 2-dimensional 

space rather than 1-dimensional (e.g. line) 
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3.3 Transmission Rate – Diversity Tradeoff 

Define transmission rate as a fraction 𝑟 of the capacity 

𝑅 = 𝑟 log 𝑆𝑁𝑅 

Using PAM with 2𝑅 = 𝑆𝑁𝑅𝑟  constellation points, we can 

then find the diversity order as 

𝑑(𝑟) = 1 − 2𝑟 , 𝑟 ∈ [0,1/2] 

Using QAM, we can use the real and imaginary dimension, 

each with 2𝑅/2 constellation points, resulting in 

𝑑(𝑟) = 1 − 𝑟 , 𝑟 ∈ [0,1] 

3.4 Frequency diversity 

Assume LTI system where we only have time shifts 

𝑦[𝑛] =  ∑ ℎ[𝑚]𝑥[𝑛 −𝑚]

𝐿−1

𝑚=0

+ 𝑤[𝑛] 

One-shot: send once, then wait 𝐿 slots for multipath 

- gives 𝐿 diversity order (L samples), but very bad rate 

Frequency diversity: use multiple paths which can be 

resolved at the receiver, as they arrive separately 

This creates large Intersymbol interference (ISI) as replicas 

of earlier symbols overlap which we need to deal with 

Direct sequence spread spectrum (DSSS) 

Symbols are modulated onto pseudonoise (PN) and spread 

across the frequency 

Delayed replica are nearly orthogonal (shift-orthogonality), 

simplifying the receiver structure 

 

 

Single-carrier Modulation 

Use shift operator 

(𝐷𝑥)[𝑛] = 𝑥[𝑛 − 1] 

Knowing the channel at the receiver, we can then do 

standard vector detection & see that we can get 𝐿 order 

diversity if 𝑀 has full rank (all singular values strictly positive) 

Code difference matrix 𝑴:            𝑀 = 𝑋𝑖 − 𝑋𝑗  

                                                           𝑋𝑗 = [𝑥𝑗    𝐷𝑥𝑗 …  𝐷
𝐿−1𝑥𝑗  ] 

As the columns of 𝑀 are linearly independent, we have full 

rank & therefore full L order diversity even for uncoded 

transmission for long enough block lengths 𝑁 ≫ 𝐿 

Same diversity gain as one-shot communication 

- much higher data rate (less waste of degrees of freedom) 

- higher receiver complexity 

Orthogonal Freq. Division Multiplexing (OFDM) 

Convert frequency-selective channel into a set of 

frequency-flat fading channels through precoding 

Diversity through coding across symbols in diff. subcarriers 

LTI: sinusoidal functions are eigenfunctions of the system 

𝑥(𝑡) = 𝑒𝑗2𝜋𝑓0𝑡  →   𝑟(𝑡) = 𝐺(𝑓0) 𝑒
𝑗2𝜋𝑓0𝑡  ,    ℎ(𝑡, 𝜏) = 𝑔(𝜏) 

LTV: not eigenfunctions anymore 

𝑥(𝑡) = 𝑒𝑗2𝜋𝑓0𝑡 →   𝑟(𝑡) = 𝐿𝐻(𝑡, 𝑓0) 𝑒
𝑗2𝜋𝑓0𝑡 

Eliminate all multipath without having to know the 

instantaneous realization of H 

1. Transform 𝐻 into a circulant matrix 

2. Diagonalize it using the DFT matrix 𝐹 

3. Receive modulation of input without interference 

𝑓𝑞 =
1

√𝑁
 

[
 
 
 
 𝜔(𝑞−1)0

 
𝜔(𝑞−1)1

…
𝜔(𝑞−1)(𝑁−1)

 
]
 
 
 
 

 , 𝜔 = 𝑒𝑗2𝜋/𝑁 

Spectral Decomposition for circulant matrices: 

Any circulant matrix 𝐶 ∈  ℂ𝑁𝑥𝑁  has N eigenvectors which 

are the column of the DFT matrix 𝐹 and eigenvalues 

𝜆 = [𝜆0…𝜆𝑁−1]
𝑇 =  √𝑁 𝐹𝐻 𝑐 , 𝑐 = [𝑐0…𝑐𝑁−1]

𝑇 

Cyclic prefix: transmit last 𝐿 − 1 symbols of the input 

vector before the input vector 𝑥 to make 𝐻 circulant 

iFFT at transmitter, FFT at receiver 

𝑦 = 𝐹𝐻𝑟 = 𝐹𝐻𝐹𝛬𝐹𝐻𝐹𝑠 =  𝛬 𝑠 

 

3.5 Diversity Order Estimates 

Input band-limited: |𝑓| < 𝐵 , Output time-limited: |𝑡| < 𝑇 

Maximally achievable diversity order is 

2𝐵

𝐵𝑐
∗
2𝑇

𝑇𝑐
= 
𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙 𝐵𝑊

𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 𝐵𝑊
∗ 
𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒
 

 

3.6 Infinite Diversity Order 

For an increasing 𝐿, the SNR is more concentrated around 

its mean and eventually becomes a deterministic quantity 

𝑆𝑁𝑅 =
𝐸𝑆
𝑁0
 ∑ |ℎ[𝑙]|2

𝐿−1

𝑙=0
    
  𝐿→∞  
→        

𝐸𝑆
𝑁0

 

Error probability converges to that one of AWGN channel 

(“average out channel realisation” gives fixed SNR)  
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4. Information Theory of Wireless 

4.1 Information theoretic basics 

Capacity: maximal rate for communication over channel 

Capacity of AWGN channel 

𝐶 =
1

2
 log2 (1 +

𝑃

𝑁0/2
 ) , 𝑤 ~ 𝑁(0, 𝑁0/2)  

Memoryless channel: channel noise corrupts inputs 

independently, no interferences (freq.-invariant) 

 

Each of 𝑀 messages is mapped onto codeword of length 𝑁 

𝑃(𝑒) = 𝑃( 𝑚̂ ≠ 𝑚 ) 

𝑅 =
log2𝑀

𝑁
  𝑏𝑖𝑡𝑠 𝑠𝑦𝑚𝑏𝑜𝑙⁄  

Reliable communication at rate 𝑅 exists, if ∀ 𝛿 > 0, we can 

find a codelength 𝑁 so that 𝑃(𝑒) < 𝛿 (𝑁 → ∞ for small 𝛿) 

Entropy: uncertainty associated with X   (“How much info?”) 

𝐻(𝑋) =  − ∑𝑝𝑋(𝑥) log2 𝑝𝑋(𝑥) 

𝐻(𝑋) ≥  0, 𝐻(𝑋) ≤ log2 𝐾  𝑤𝑖𝑡ℎ 𝐾 = |𝒳| , 𝑋 ∈  𝒳 

Entropy is maximal for uniformly distributed values over 𝐾 

Joint entropy 

𝐻(𝑋, 𝑌) =  − ∑𝑝𝑋,𝑌(𝑥, 𝑦) log2  𝑃𝑋,𝑌(𝑥, 𝑦) 

Conditional entropy 

𝐻(𝑋 | 𝑌)  =  − ∑𝑝𝑋,𝑌(𝑥) log2 𝑝𝑋|𝑌(𝑥 | 𝑦)  

Chain rule for entropy 

𝐻(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌 | 𝑋) = 𝐻(𝑌) + 𝐻(𝑋 | 𝑌)  

Conditioning reduces entropy 

𝐻(𝑋 | 𝑌) ≤ 𝐻(𝑋) 

 

 

Mutual information   (“reduction of uncertainty if I know one”) 

𝐼(𝑋; 𝑌) = 𝐻(𝑌) − 𝐻(𝑌 | 𝑋) = 𝐻(𝑋) − 𝐻(𝑋 |  𝑌)   ≥ 0 

 

Noisy channel theorem 

For a reliable channel, we should have low uncertainty in 

decoding the input signal based on the output signal: 

𝐻( 𝑥 | 𝑦)  ≈ 0 

𝑅 ≈
1

𝑁
 𝐼(𝑋; 𝑌)  

𝑏𝑖𝑡

𝑠𝑦𝑚𝑏𝑜𝑙
 , 𝐼(𝑋; 𝑌) ≈ log2𝑀 

For a large enough blocklength of the code, we can 

average out the effect of the random noise and get 

𝐶 =  max
𝑝𝑥(.)

𝐼(𝑥; 𝑦) 

Continuous random variables 

Differential entropy 

ℎ(𝑋) =  − ∫𝑓𝑋(𝑥) log2 𝑓𝑋(𝑥)  𝑑𝑥
𝑥

 

ℎ(𝑋 | 𝑌)  =  − ∫ ∫𝑓𝑋,𝑌(𝑥, 𝑦) log2 𝑓𝑋 | 𝑌(𝑥 | 𝑦) 𝑑𝑥𝑑𝑦
𝑦𝑥

 

Usually, a power constraint exists: 𝐸[𝑥2] ≤ 𝑃 

AWGN Channel  

For a Gaussian RV 𝑋 ~ 𝑁(𝜇, 𝜎2) 

ℎ(𝑥) =
1

2
 log(2𝜋𝑒 𝜎2) 

As noise & input are Gaussian, the output is also Gaussian: 

ℎ( 𝑦 | 𝑥)  =
1

2
log (2𝜋𝑒

𝑁0
2
 ) , 𝑤 ~ 𝑁 (0,

𝑁0
2
) 

𝐸[𝑦2] ≤ 𝑃 +
𝑁0
2

 

Gaussian random variables maximize differential entropy 

𝐶 =
1

2
log2  (1 +

2𝑃

𝑁0
 ) 

For a continuous-time AWGN channel with complex noise 

𝑤 ~ 𝐶𝑁(0, 𝑁0)  (real- & imaginary part 𝜎2 =
𝑁0

2
 each) 

𝐶 =       log2 ( 1 +
𝑃

𝑊 𝑁0
 )  

𝑏𝑖𝑡

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
 

𝐶 = 𝑊 log2 ( 1 +
𝑃

𝑁0 𝑊
 )                  

𝑏𝑖𝑡

𝑠
                  

 

Small SNR:      linear increase with received power 

            capacity doubles with every 3𝑑𝐵 increase 

High SNR:        3𝑑𝐵 increase only yields additional one bit 

Small W:          increasing W yields rapid capacity increase 

                          bandwidth-limited regime 

Large W:           little effect, spread 𝑃 over more dimensions 

                           power-limited regime 

                           (achieve capacity for 𝑊 → ∞) 
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4.2 Capacity of Fading Channels 

Slow Fading Channel: 𝑦[𝑛] = ℎ 𝑥[𝑛] + 𝑤[𝑛] 

Short codeword length compared to coherence time 

Outage probability 

𝑃𝑜𝑢𝑡(𝑅) = 𝑃( log(1 + |ℎ|
2𝑆𝑁𝑅) < 𝑅 ) 

  

                = 𝑃 ( |ℎ|2 < 
2𝑅 − 1

𝑆𝑁𝑅
 ) 

Coding can only average out noise, but cannot do anything 

against channel fading (in slow fading, channel is constant) 

Capacity of this fading channel is zero, as coding cannot 

guarantee a diminishing error probability 

Outage capacity 

Capacity, so that rate lower in (1 − 𝜀) ∗ 100% : 

𝜀 = 𝑃(log2(1 + |ℎ|
2 𝑆𝑁𝑅) ≤ 𝐶𝑜𝑢𝑡,𝜀  ) 

For small 𝜀 (and Rayleigh fading), we get 

𝐶𝑜𝑢𝑡,𝜀 ≈ log2(1 + 𝜀 𝑆𝑁𝑅) , 𝑃𝑜𝑢𝑡 =
2𝑅 − 1

𝑆𝑁𝑅
 

Diversity 

For an effective channel with 𝐿 diversity order, we get 

log 𝑃𝑜𝑢𝑡(𝑅) =  −𝐿 (log 𝑆𝑁𝑅) + 𝑐 

Optimal diversity-multiplexing tradeoff (DMT) 

Define rate as constant fraction of capacity 

𝑅 = 𝑟 log 𝑆𝑁𝑅 , 𝑃(𝑒) = 𝑆𝑁𝑅−𝑑(𝑟) 

In the optimal case where 𝑃(𝑒) = 𝑃𝑜𝑢𝑡, we get 

𝑑𝑜𝑝𝑡(𝑟) = 1 − 𝑟 

QAM is DMT-optimal for scalar fading channels (see 3.3) 

Fast Fading Channel   𝑦[𝑛] = ℎ[𝑛] 𝑥[𝑛] + 𝑤[𝑛] 

Whereas in the slow fading channel, the Shannon capacity 

was zero, we now have a positive ergodic capacity 

𝐶 = 𝐸[ log2(1 + |ℎ|
2 𝑆𝑁𝑅 ) ]  

using a random Gaussian codebook with i.i.d. symbols 

Derivation 

1

𝑁
 𝐼(𝑦; 𝑥) ≤

1

𝑁
 ∑ 𝐼(𝑦[𝑛]; 𝑥[𝑛])

𝑁

𝑛=1

 

  

                    ≤
1

𝑁
 ∑ log(1 + |ℎ[𝑛]|2 𝑆𝑁𝑅)

𝑁

𝑛=1

 

As Gaussian input symbols achieve max. mutual information. This 

converges to above formula by the “law of large numbers”. 

In fast fading case, we can code over many independent 

fades of the channel by coding over many symbols and can 

therefore average out fading channels 

(Requires ergodic channel where each channel realisation 

can be seen when listening long enough) 

 

Capacity of fading channel is always smaller than AWGN 

channel and only equal for deterministic channel. 

- low SNR: difference is negligible 

- high SNR: Jensen penalty 𝐶𝑓𝑎𝑑𝑖𝑛𝑔 = 𝐶𝐴𝑊𝐺𝑁 − 0.83 
𝑏𝑖𝑡

𝑠 𝐻𝑧
 

→ need 2.5dB more power to achieve the same capacity 

 

 

 

 

5. Multiple Input Multiple Output 

5.1 Maximum Ratio Combining  (“beam forming”) 

Receiver MRC (CSIR) 

 

With a resulting noise  𝑤̃ ~ 𝐶𝑁(0, (|ℎ0|
2 + |ℎ1|

2)𝑁0) 

 

By knowing the channel, we get second-order diversity as 

well as a 2x array gain 

Transmit MRC (CSIT) 

 

𝑟 =
1

√2
 𝑥0 ( |ℎ0|

2 + |ℎ1|
2 )2 

𝑆𝑁𝑅 =
𝐸𝑥
2𝑁0

 ( |ℎ0|
2 + |ℎ1|

2 )2 

Also, 2x array gain as well as a diversity gain 

MRC uses beam forming to get spatial filtering 

(only receive from a certain direction) 
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5.2 Alamouti Scheme (CSIR) 

 

 

 

Knowing the channel at the receiver, we project y: 

 

This results in second-order diversity, but without power 

gain, as we have to send each symbol twice for detection 

We excite the channel in two orthogonal directions; 

therefore, even if one shoot be perpendicular and vanishes 

after projection onto h, the other one is received perfectly 

5.3 Delay Diversity 

 

Convert spatial diversity into frequency diversity 

→ looks like frequency-selective (LTI) channel 

Diversity order of two, as two channel taps 

5.4 Intentional frequency offset diversity 

 

 

Convert spatial diversity into time diversity 

→ looks like time-selective (LFI) channel 

5.5 Space-time coding (CSIR) 

Generalization of Alamouti for multiple transmit antennas 

→ send over linearly independent channels 

 

We find that the diversity is given by the rank of the 

difference of two space-time codeword matrices 𝑪, 𝑬 

𝐸ℎ[ 𝑃(𝑪 → 𝑬 | ℎ] ≤ 𝑆𝑁𝑅
−𝑟𝑎𝑛𝑘(𝑪−𝑬)

1

∏ 𝜆𝑖/2
𝑟
𝑖=1

 

Rank criterion: Full diversity is achieved, if 

𝑟𝑎𝑛𝑘(𝑪 − 𝑬) = 𝑀𝑇    ∀ {𝑪, 𝑬} 

Determinant criterion: 𝑪 − 𝑬 as orthogonal as possible 

∏ 𝜆𝑖    𝑙𝑎𝑟𝑔𝑒 →   𝑐𝑜𝑑𝑖𝑛𝑔 𝑔𝑎𝑖𝑛 

5.6 MIMO wireless systems 

Adding new antennas opens up new degrees of freedom; 

just like with adding bandwidth, this is especially effective 

for a small number of antennas 

Power constraint 

𝐸[𝒙𝐻𝒙] = 𝑡𝑟𝑎𝑐𝑒[ 𝐸[ 𝒙 𝒙𝐻] ] ≤ 𝑃 

Capacity 

As we have an ergodic channel (and therefore H i.i.d.), all 

directions are equally good and we just transmit equally 

𝐶 = 𝐸𝐻  [log det ( 𝐼𝑀𝑅 +
𝑃

𝑀𝑇
 𝐻 𝐻𝐻  ) ] 

For a fixed 𝑀𝑅  , increasing the transmit antennas ensures 

the different channels are orthogonal and results in 

𝐶 = 𝑀𝑅 (1 + 𝑆𝑁𝑅) , 𝑀𝑇 → ∞ 

That is, we get an 𝑀𝑅-fold increase in capacity due to 𝑀𝑅  

“spatial degrees of freedom” thanks to rich scattering 

In general, an 𝑀𝑅 𝑥 𝑀𝑇  i.i.d. 𝐶𝑁(0,1) channel gives us 

𝐶 = min(𝑀𝑇 , 𝑀𝑅)  log (
𝑆𝑁𝑅

𝑀𝑇
) + 𝑐𝑜𝑛𝑠𝑡. 

SIMO and MISO systems do not lead to an increase in the 

number of degrees of freedom. 

 

 

 

 

 



9 
 

5.7 Capacity of MIMO with CSIT 

For parallel Gaussian channels, we use “waterfilling” to 

correctly distribute power over the different channels so 

that capacity is achieved 

 

The allocated power with 𝑧𝑛 ~ 𝑁(0, 𝜎𝑛
2) is 

𝑃𝑛 = max { 0,   
1

𝜇
− 𝜎𝑛

2 }  , ∑𝑃𝑛 ≤ 𝑃 

We use singular value decomposition (SVD) to decompose 

the vector channel into a set of parallel independent scalar 

Gaussian subchannels: 

𝐻 = 𝑈 𝛬 𝑉𝐻 , 𝛬 = 𝑑𝑖𝑎𝑔[ 𝜆1 , … , 𝜆𝑁] 

Sender sends 𝑥̃ = 𝑉 𝑥 , at receiver use 𝑦̃ = 𝑈𝐻 𝑦 

Using this and defining 𝑁 = min{ 𝑀𝑇 , 𝑀𝑅  }, we get 

𝐶 =  max
∑𝑃𝑛≤𝑃

  ∑ log ( 1 +
𝑃𝑛 𝜆𝑛

2

𝜎2
 )

𝑁

𝑛=1

 

with waterfilling for the optimal power allocation 

Low SNR: allocate all power to the best subchannel 

→ power gain of max
𝑛
𝜆𝑛
2  

High SNR: allocate equal power to subchannel with 𝜆𝑛 > 0 

→ capacity increases linearly with rank of H: 

 𝐾 ≤ min{ 𝑀𝑇 , 𝑀𝑅} : number of spatial degrees of freedom 

 

6. Various 

Uncertainty principle 

Cannot have strong limitation in time and frequency 

domain 

𝑇0
2 = ∫ 𝑡2 |𝑥(𝑡)|2 𝑑𝑡  , 𝐵0

2 = ∫𝑓2 |𝑋(𝑓)|2 𝑑𝑓 

𝑇0𝐵0 ≥ ‖𝑥(𝑡)‖
2 /4𝜋 

 

2WT Theorem 

Signals which are time-limited to [−𝑇, 𝑇] and band-limited 

[−𝐵, 𝐵] live in a 4𝐵𝑇 −dimensional signal space 
 

Pocket Gambler trick 

𝐻(𝑋) = log2𝑀 →  𝑀 = 2
𝐻(𝑥) : # 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 

Good channel: 2𝐻(𝑥|𝑦) = 1        ( 𝐻(𝑥 | 𝑦) = 0 )  

Bad channel: multiple X’s can cause a certain Y 

→ can only distinguish which cluster of X may cause Y 

“Resolution” How many clusters can I separate?” 

# 𝑜𝑓 𝑋

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑠𝑖𝑧𝑒
=  

2𝐻(𝑥)

2𝐻(𝑥|𝑦)
= 2𝐻(𝑥)−𝐻(𝑥|𝑦) = 2𝐼(𝑥;𝑦) 

𝐼(𝑥; 𝑦) ∶ number of equivalence classes /  

                “effective number of bits I can detect” 

Mathematics 

‖𝑥(𝑡)‖ =  √∫|𝑥(𝑡)|2  𝑑𝑡 

Circularly symmetric complex Gaussian RV 

𝑈 = 𝑈𝑅 + 𝑗 𝑈𝐼     ~ 𝐶𝑁(0, 𝜎
2) 

𝑈𝑅 , 𝑈𝐼 ∶       𝑖. 𝑖. 𝑑  ~ 𝑁 (0,
𝜎2

2
) 

Toeplitz matrix 

Constant along its diagonals 

- a cyclic matrix is always Toeplitz 

Eigenfunctions of LTI system 

Sinusoids are eigenfunctions of an LTI system 

𝐻 = 𝐹 𝛬 𝐹𝐻 , 𝛬 ∶ 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 

By periodically repeating the signals, we can get a circular 

matrix for the channel matrix 

Complementary error function 

𝑄(𝑥) =  ∫
1

√2𝜋
 𝑒− 

𝑢2

2  𝑑𝑢

∞

𝑥

 

𝑄(𝑥) ≤ 𝑒−
𝑥2

2  

Exponentially distributed random variable 

𝑓|ℎ(𝑡,𝜏)|2(𝑥) =
1

𝜎2
 𝑒
−
𝑥
𝜎2 , 𝑥 ≥ 0 

𝐸[ 𝑒−𝑠𝑥 ] =
1

1 + 𝑠
 

Useful approximations 

√
1

1 + 𝑥
  =   1 −

𝑥

2
+ 𝑜(𝑥), 𝑥 → 0 

𝑒𝑥   =   1 + 𝑥 + 𝑜(𝑥)           

 

log2(1 + 𝑥) ≈ 𝑥 log2 𝑒  , 𝑥 ≈ 0 

log2(1 + 𝑥 ) ≈ log2(𝑥) , 𝑥 ≫ 1 


