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1. Introduction
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Modulation (frequency shift to carrier frequency):
- enables multiple (slightly shifted) simultaneous channels
- better channel characteristics (less absorbtion)

Capacity: maximum rate with error-free communication
(asymptotically in the block length; spread
redundancy far enough to not affect all)

Small-scale fading: displacement in magnitude of
wavelength results in significant field changes

Large-scale fading: due to shadowing & distance

Systems overview

Time shifts: due to multipath propagation
Frequency shift: due to Doppler shifts as objects include
movement and change location over time

Linear time-variant (LTV): time & frequency shifts

Linear time-invariant (LTI): only time shifts, no freq. shifts
r(t) = h(r) *x(@),  h(,1)=g()

Linear frequency-invariant (LFl): only freq. shifts, no time
- modulation of input signal

r(t) =m@®)x(),  Sy(r,v) = M()5(7)

h(t, ) =m(t) §(1)

2. Wireless Fading Channels

Transmit signal with complex envelope x(t)

xc(t) = Re {x(t) e/?™ct}

Received signal due to multipath propagation

N

R(®) = ) an® x(t — ()

n=0

a, :path gain; 1, :pathdelay

Equivalent baseband signal:

N

r(t) = Z 4 (£) e 2T ® x(t — 7, (8))

n=0
Doppler shift: v, = —f. T,

Use approximations which hold if
B/fe < 1/|vntl

With bandlimited signals, we can describe it as

N

r(t) = Z a, x(t — t,) ef2™nt |

n=0

a, = a, e~ J2rfctn

f f Sy (T, v) x(t — 1) e/?™ drdv

T v

(Delay-Doppler) Spreading function: influence of scatterers

Sy(t,v) = Jh(t, ) e 2wt dt = F,_{h(t,t)}

t

Time-varying impulse response

A(e0) = [ Sulom) ™ dv = FALS,(00))

r(t) = J h(t,t) x(t — 1) dt

T

Linear time-invariant (LTI1): time shifts, no frequency shifts

h(t,7) = g(@), Su(r,v) =g W)

Linear time-variant (LTV): both time & frequency shifts
(do not commute in general)
- time shifts: multipath propagation

- frequency shifts: movement of Tx, Rx or scatterers

Time-varying transfer function (Weyl symbol)

Ly(t,f) = fh(t, 1) e 2T dr = Fo{ h(t,7)}

T
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2.2 Tapped Delay-line Interpretation
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For digital tapped delay: r[n] =




2.3 WSSUS Channels

Wide-sense stationary (WSS): statistics does not change

- all tap weights zero-main stationary with respect to time
Uncorrelated scattering (US): scattered paths uncorrelated

Ry(t,t';t,t") =Ryt —t', 1) 6(t — 1)
=E[h (t,7) h*(t', ") ]

Ru(t,t'; f.f) =Ryt =t f = f")
= E[Ly(t, /) Lu(t', f1]

Ly is both wide-sense stationary in both time & frequency
(US in delay <> WSS in freq.; US in Doppler shifts & WSS in time)

Scattering function: average output power of the channel
(depending on Doppler freq. v and delay 7)

E[Sy(t,v) S, v)] = Cy(r,v) 6(z — 1 )6(v — V')

Ru(At. Af) = / Ry (At, 1)~ 2mA dr

v
= f/ Cra (7, )P ™A e =12
TV

R;,,(At, T)

(Tv)

FroarFol A, Ru(At, Af)

Cu

LTI-system

v typical mobile radio channel with
Tonar * Vimar << 1 (underspread);
Timaz * Vinax 18 00 the order of 1072
for land-mobile channels and as
low as U)"Tﬁu' certain indoor
channels.

2.4 Parameter Characterization for WSSUS

Path loss: fraction of input energy arriving at receiver

P= ffCH(T,v) dtdv

Time dispersiveness
Power-delay profile (PDP): avg. reflected power at delay ©

q(t) = J-CH(T,U) dv =0

v

Multipath delay spread:

1
o = J; f(r— 92 q(2) de

Coherence bandwidth B_: width of R, (0,Af) = F.{q(1)}
E[Lxu(t, fo) Li(t, f1)] = Ru(0, fo — fi)
[Ru(0, Af)

—
VA N

B, B,

Frequency Flat fading: B < B,

(Freq. invariant: all freq. scaled with same factor)

Frequency-selective fading: factor depends on frequency

const

=~

c O-L—

B, : spread in frequency; ¢, : spread in time

Because of the uncertainty principle, both cannot be small
( small freq. domain spread < large time domain spread)

With flat fading, the frequency does not matter and we
have a (time-selective) modulation of the channel:

r@ =~c®x®), Lyt f)=c(®)

Frequency dispersiveness

Power-Doppler profile: average reflected power at v

p(v) = fCH(T,v) dr >0

T

Doppler spread: spectral broadening through movement

1
oy = J; [w=92 pw) v

Coherence time T .: width of Ry (At, 0)

const

c

Oy

Slow fading: Tsigna L T

(Time invariant: entire signal sees same channel)

Fast fading: channel changes substantially over signal
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B.

input signal bandwith B

1.“Flat” (B K B, T < T,): r(t) =c - x(t)
2. “Frequency-selective” (LTI):  r(t) = (h * x)(¢t)
3. “Time-selective” (LFI):

r(t) = m(t)x(t)

4.B>B,T>T: ()= fT fng(T, v) x(t — 1) ef2mt



2.5 Probabilistic Characterization of Fading

Rayleigh fading (non-LOS):
h(t,7) ~CN(0,02)

Magnitude: Rayleigh distributed

72

2z -z
fineen (@) = 2e’

Squared magnitude: exponentially distributed

1 _x
flh(t,r)|2(x) = P e o%, x>0

Ricean fading (LOS case):
h(t,T) ~u+ CN(0,02)

Ricean K-factor: K = |u|?/o?

2.7 Discretized Channel Models

Use sampling theorem to get countably infinite number of

parameters for discretized channel description

Input frequency limitation: band-limited to B

Output time limitation: maximal signal duration T

Received signal consists of time-frequency shifted versions
of a band-limited version of the input signal

The corresponding received signal can be constructed with
- // Su(r,v)x(t — 1)e’ ™ drdy
1 —f(m 1 m -y
- J - . o J2m gyt
- 1131'%:2,:“5”(23‘21')1”(’ 23)’ ’

Most of the volume of Sy, is supported over rectangle

1
Vot

[D D+_] [ V- 2T

V: max. Doppler shift ; D: max. time shift / delay

Complete channel characterization with finite parameters

Discrete-time channel model

Su(7,v) = Su(r, v) rect(r, D) rect(v, V')

v
1% Su(7,v)
- S a—
—D ESSEREEs D 4
_V
Input signal: bandlimited to [-B, +B]

Doppler shift limited to [V, + V]
Received signal: bandlimited to [-B—-V,B+V]

h(t, T) bandlimited to [—B, B] with respect to 7,
as Ly (t, f) bandlimited with respect to f

Therefore, we can sample the received signal with
fs =2(B+V), where f, = 2B

rin] = Z hln,mlxn —m)

m=—0o0

r[n] & J(%) ., hln,m] = %h (% Jfﬂ) . x[n] & z(;—;)

Additive White Gaussian Noise (AWGN)

Assume complex zero-mean additive white Gaussian noise
- sampled as well with f;

- white = independent over time

- independent of the paths, influence usually at receiver

(oo}

y[n] = z h[n,m] x[n — m] + w[n]

m=—co

2.7 Identification of LTV Systems

Want to extract h(t, 7) from response r(t) to a known

probing signal x(t) — send pilot first

LTI systems: just use Dirac pulse x(t) = 6(t)
(need to observe output long enough to identify system)

For LTV systems, this delivers h(t, T) only along a 45° line:

r(t) = f h(t,7) x(t — 1) dt = h(t,t)

Assume Sy (T, v) supported on [—7y, To] x [V, Vo]
— h(t, 1) supported on [—T,,To] in T,

bandlimited to [—v,, v,] with respect to t

Solution: Dirac train to track evolution of impulse response

W=y St-lt),

to = 27,

r(t) = ZZ_ h(t ¢ — 1 ty)

W T
To -

A AA

hit.t) Wt t—to) h(t, 1 — 21g)

To reconstruct h(t, ) for all values from the known
samples in t —direction, we require a sampling of

1
20 < tg < —,
0 0 20,

bandlimited to [—v,, v,]
For such a solution to exist, we therefore require

410v0 = Ay < 1
That is, support area of Sy (T, v) must be smaller than 1

Probing fraction: A = 4tyv, of signal space dim. for probing
Probing signal: design as orthogonal as possible (else noise)



3. Diversity

Send signals that carry same information over multiple
independently fading paths = more reliable reception

Small coherence BW: If | send info over multiple
frequencies, one might fail but others will not

— diversity: decreased chance of failure

3.1 Detection in Rayleigh Fading Channel

Non-coherent detection
For a flat-fading channel (LFI), we get

y[m] = h[m]x[m] + w[m]
w[m] ~CN(O,Ny),  h[m] ~CN(0,1)

Need either different magnitudes or orthogonal symbols

Log-likelihood ratio
H,

) = ln(f(yIHo)>

f | Hy)

A v I

H=H

Optimum noncoherent detection projects the received
signal vectors onto each of the two possible transmitted
messages and compares the magnitudes squared

1

P = 305 snp)

Coherent detection
P(e|lh) = Q (,/2 [h[0]]2 SNR)

Averaging over random channel

p _ 1 1 1 1 _ 1 p
(e) = E - 4 1 ~4SNR _ E (&) non—con.
SNR

AWGN channel
P(e) = Q(V2SNR ) ~e™SNR

In comparison to non-coherent & coherent detection with
inverse decay with SNR, the error probability in the AWGN
channel decays exponentially with the SNR

In a fading channel, error performance is poor not because
the channel is unknown at the receiver, but because the
probability that the channel fades is high

1 1
= 2 — ) —
P(deep fade) = P( |R[0]]* < SNR) SNE

If the channel gain is much larger than SNLR (no deep fade),
conditional error probability decays exponentially in SNR

At high SNR, typical error is due to small channel gain and

not because of large additive noise

P, = Pe|"deepfade"*Pdf + e_SNR*Pndf

— Diversity: send information over multiple channels, so
that at least one is not in deep fade and can be used

- time, frequency & space (antenna) diversity

- macro (cellular networks) & multi-user (scheduling)

3.2 Time Diversity

Averaging over the fading of the channel over time
Coherence time usually around 10-100 symbols

Interleaving: ensure symbols are transmitted over
independently fading branches

Coherent detection: project onto known channel vector

— matched filter : Maximum Ratio Combiner (max SNR)
- weight received signal proportional to signal strength
- align the phases in the summation (reverse phase shift)

L independently fading branches are coherently combined
and result in an array & diversity gain

P(e |n) = @ (V2IAIZ SNR)

L-1
1Al = JRL?
=0

Sum of the squares of 2L independently real Gaussian RV
chi-square distribution with 2L degrees of freedom (X2,)

— L-1 ,—x
fxzzL(x)— (L—1)!x e, x=0
With those diversity branches, we less error probability, as

we are less in “deep fade” (all channels would have to be):

logP(e) ~ —LlogSNR +C

1 1 1
PRI < oz ) = 7
(” I SNR L! SNR:

Repetition coding: already achieves diversity gain
- does not efficiently use degrees of freedom in the system

Rotation code: send rotated QAM signal
- rotated QAM so faded channel still allows detection
- calculate Pairwise Error Probability (PEP)

1
P(e) = SNR™? = — SNR™

min(5;)

d : diversity order, minimum SNR exponent
¢ : coding gain, minimum c; in front of PEP

Maximize the minimum product distance for the best error
probability (minimal over all is important)

Rotation-based constellation has an increased minimum
product distance than its comparable 4-PAM repetition-
based code, as it spreads the codewords in 2-dimensional
space rather than 1-dimensional (e.g. line)

(1]

(3b,3b) roT
(b, b) .r[()] “




3.3 Transmission Rate — Diversity Tradeoff

Define transmission rate as a fraction r of the capacity
R =rlogSNR

Using PAM with 2R = SNR" constellation points, we can

then find the diversity order as
dir)=1-2r, r€[0,1/2]

Using QAM, we can use the real and imaginary dimension,

each with 2R/2 constellation points, resulting in
diry=1-r, r € [0,1]

3.4 Frequency diversity

Assume LTI system where we only have time shifts

L-1

ylnl = )" hlmlx{n —m] +wln]
m=0

One-shot: send once, then wait L slots for multipath
- gives L diversity order (L samples), but very bad rate

Frequency diversity: use multiple paths which can be
resolved at the receiver, as they arrive separately

This creates large Intersymbol interference (1SI) as replicas
of earlier symbols overlap which we need to deal with
Direct sequence spread spectrum (DSSS)

Symbols are modulated onto pseudonoise (PN) and spread

across the frequency

Delayed replica are nearly orthogonal (shift-orthogonality),
simplifying the receiver structure

Single-carrier Modulation

Use shift operator

(Dx)[n] = x[n — 1]

Knowing the channel at the receiver, we can then do
standard vector detection & see that we can get L order
diversity if M has full rank (all singular values strictly positive)

Code difference matrix M: M=X;-X;

X] = [x] Dx] DL_lx]']

As the columns of M are linearly independent, we have full
rank & therefore full L order diversity even for uncoded
transmission for long enough block lengths N >> L

Same diversity gain as one-shot communication
- much higher data rate (less waste of degrees of freedom)
- higher receiver complexity

Orthogonal Freq. Division Multiplexing (OFDM)

Convert frequency-selective channel into a set of
frequency-flat fading channels through precoding

Diversity through coding across symbols in diff. subcarriers
LTI: sinusoidal functions are eigenfunctions of the system
x(t) = e/t > 1(t) = G(fo) &/, h(t,7) = g()
LTV: not eigenfunctions anymore

x(t) = P2t 5 () = Ly(t, fo) e/

Eliminate all multipath without having to know the
instantaneous realization of H

1. Transform H into a circulant matrix
2. Diagonalize it using the DFT matrix F

3. Receive modulation of input without interference

1 w(@-10

fi=—| w@vr |,

w = el2T/N
VN

w@DW-1) J
Spectral Decomposition for circulant matrices:

Any circulant matrix C € C¥*N has N eigenvectors which

are the column of the DFT matrix F and eigenvalues
A=[Ag Ay ]"=VNFic, c=]cy.cy_1l”

Cyclic prefix: transmit last L — 1 symbols of the input
vector before the input vector x to make H circulant

iFFT at transmitter, FFT at receiver

y =Filr = FHFAFHiFs = As

=

=

IFFT | | Prs H s |- | FFT|:
oy | TN UN

IN-1 IN-1 UN—

FE]

3.5 Diversity Order Estimates

Input band-limited: |f| < B, Output time-limited: |t| < T

Maximally achievable diversity order is

2B 2T

input signal BW  output signal duration
B, T.  coherence BW

coherence time

3.6 Infinite Diversity Order

For an increasing L, the SNR is more concentrated around
its mean and eventually becomes a deterministic quantity

ES L-1 L—-oo ES
SNR = = Z e =5 28
NO =0 NO

Error probability converges to that one of AWGN channel
(“average out channel realisation” gives fixed SNR)



4. Information Theory of Wireless

4.1 Information theoretic basics

Capacity: maximal rate for communication over channel

Capacity of AWGN channel

1
C=210g2(1+ ). w ~ N(0,No/2)

Ny/2

Memoryless channel: channel noise corrupts inputs
independently, no interferences (freq.-invariant)

Message o Epcoder
me{0.1,....] W -1}

X Y
"‘ Channel p(y|x) -~* Decoder -

Each of M messages is mapped onto codeword of length N

P(e)=P(m+m)

log, M
R= 82

bits/symbol

Reliable communication at rate R exists, if V.6 > 0, we can
find a codelength N so that P(e) < 6 (N — oo for small §)

Entropy: uncertainty associated with X (“How much info?”)
HOO = = ) pe(x) log, px(@)

H(X) = 0, H(X) <log, K withK = |X| ,X€ X

Entropy is maximal for uniformly distributed values over K

Joint entropy

HOY) = = ) pey(6,) 10g, Pry(x,9)
Conditional entropy

HX|Y) = - ZPX,Y(x) log, pX|Y(x [¥)

Chain rule for entropy
HX,Y)=HX)+HY |X)=HX)+HX|Y)
Conditioning reduces entropy

HX|Y) < HX)

H(X) H(Y)

H(X,Y)

Mutual information (“reduction of uncertainty if | know one”)

IGY)=HY)-H{Y|X)=HX)-HX|Y) =0

Noisy channel theorem

For a reliable channel, we should have low uncertainty in
decoding the input signal based on the output signal:

H(x|y) =0

1
R~=I1(X;Y)

_ 1(X;Y) =1 M
N symbol ’ (X;Y) ~ log,

For a large enough blocklength of the code, we can
average out the effect of the random noise and get

C = maxI(x;y)
px()

Continuous random variables

Differential entropy

A = = [ fxG0 log, f@) dx

MK Y = - f f fer (0 y) logs fi v (x | y) dxdy
xvy

Usually, a power constraint exists: E[x?] < P

AWGN Channel
X ~N(u,0?)

For a Gaussian RV

1
h(x) = > log(2me 2)

As noise & input are Gaussian, the output is also Gaussian:

1 N, N,
h(y|x) =§log(2ne7), W~N<0,7)
N
E[y*]<P +70

Gaussian random variables maximize differential entropy

c=tiog, (142
=3 08> Ny
For a continuous-time AWGN channel with complex noise

w ~ CN(0,N,) (real- & imaginary part g2 = % each)

bit
c= 1 < 1+ )
082 W N,/ complex dimension
c=wl < 1+ P ) bit
= 1V 1082 No W s
Small SNR: linear increase with received power

capacity doubles with every 3dB increase

High SNR: 3dB increase only yields additional one bit

Small W: increasing W vyields rapid capacity increase
bandwidth-limited regime

Large W: little effect, spread P over more dimensions

power-limited regime
(achieve capacity for W — o)



4.2 Capacity of Fading Channels

Slow Fading Channel: y[n] = h x[n] + win]

Short codeword length compared to coherence time
Outage probability
P,:(R) = P(log(1+ |h|2SNR) <R)
_p(n < 22
B SNR

Coding can only average out noise, but cannot do anything

against channel fading (in slow fading, channel is constant)

Capacity of this fading channel is zero, as coding cannot
guarantee a diminishing error probability

Outage capacity
Capacity, so that rate lowerin (1 — &) * 100% :

€ = P(log, (1 + |h|? SNR) < Coyze )

For small € (and Rayleigh fading), we get
2R -1

Coue = loga(1+£SNR) ,  Pour =~

Diversity

For an effective channel with L diversity order, we get
logP,,:(R) = —L (logSNR) + ¢

Optimal diversity-multiplexing tradeoff (DMT)
Define rate as constant fraction of capacity

R =rlogSNR, P(e) = SNR™4®M
In the optimal case where P(e) = P,,;, we get

dope(M) =1—71

QAM is DMT-optimal for scalar fading channels (see 3.3)

Fast Fading Channel y[n] = h[n] x[n] + wn]

Whereas in the slow fading channel, the Shannon capacity
was zero, we now have a positive ergodic capacity

C = E[log,(1 + |h|> SNR)]
using a random Gaussian codebook with i.i.d. symbols
Derivation

1 1 v
SISy Z’(Y["]”‘["D

n

=

1
3 Z log(1 + |h[n]|?> SNR)
n=1

As Gaussian input symbols achieve max. mutual information. This
converges to above formula by the “law of large numbers”.

In fast fading case, we can code over many independent
fades of the channel by coding over many symbols and can
therefore average out fading channels

(Requires ergodic channel where each channel realisation
can be seen when listening long enough)

Capacity of fading channel is always smaller than AWGN
channel and only equal for deterministic channel.
- low SNR: difference is negligible

. bit
- high SNR: Jensen penalty Cr,4ing = Cawen — 0.83 s

— need 2.5dB more power to achieve the same capacity

5. Multiple Input Multiple Qutput

5.1 Maximum Ratio Combining (“beam forming”)
Receiver MRC (CSIR)
hj

j fm/ T Yo = hox +wo g
xr

T S—V
h\' >,
1 =y +w, —><>IC—

hi

W~ CN(0, (Ihol? + 1hy[*)Np)

=0 (\/_) (Jhol* + |Ra*) sw)

With a resulting noise

) l|hn‘2 + |y ‘2]-\'[1

By knowing the channel, we get second-order diversity as
well as a 2x array gain

Transmit MRC (CSIT)

.
hy

1
r=—1x (lhol* + |hy|?*)?

V2

Ex
NR = 2 22
SNR = 5= Clhol? + [hal?)

Also, 2x array gain as well as a diversity gain

MRC uses beam forming to get spatial filtering
(only receive from a certain direction)



5.2 Alamouti Scheme (CSIR)

—T] T —T \ho T
T Yo, th
Th Ty /

—_

Yo = hoxo + hyxy + wy
Y1 = —hox] + hyaxg + wy

Yo ho My Lo wo
Y- M - [m —hr;} H ' H
H

A b'e W

Knowing the channel at the receiver, we project y:

iy _ [1hol? + ] 0 | [%o Wp
Hay = [ 0 lhol? + |ha]?] | *

This results in second-order diversity, but without power
gain, as we have to send each symbol twice for detection

We excite the channel in two orthogonal directions;
therefore, even if one shoot be perpendicular and vanishes
after projection onto h, the other one is received perfectly

5.3 Delay Diversity

Y

xr(n| . ho ¥
\\‘ ‘

y[n] = hox[n] + hyxln — 1] + wn]

Convert spatial diversity into frequency diversity
— looks like frequency-selective (LTI) channel

Diversity order of two, as two channel taps

5.4 Intentional frequency offset diversity

f
t[n] N [ yin]

“h

15!

(__,iQWH”u

y[n] = hox[n] + hiz[n]e’*™" + wn]
= (ho + h1e”*™™) 2[n] + w[n]
—

..'Hl”]

Convert spatial diversity into time diversity
— looks like time-selective (LFl) channel

5.5 Space-time coding (CSIR)

Generalization of Alamouti for multiple transmit antennas

— send over linearly independent channels

Cr—p - C1 Gy : h T
\_V_/ .

C :

\!;x[

We find that the diversity is given by the rank of the
difference of two space-time codeword matrices C, E

1

E.[P E < NR—Tank(C—E)
W[P(CoE|h]<S T2

Rank criterion: Full diversity is achieved, if
rank(C — E) = M; V{C E}
Determinant criterion: C — E as orthogonal as possible

1_[ A; large — coding gain

5.6 MIMO wireless systems

Adding new antennas opens up new degrees of freedom;
just like with adding bandwidth, this is especially effective
for a small number of antennas

Power constraint
E[x""x] = trace[ E[xx"]] <P

Capacity

As we have an ergodic channel (and therefore H i.i.d.), all
directions are equally good and we just transmit equally

C=E [1 dt(l + L HHH)]
= by |logdet| [y, M,
For a fixed My, , increasing the transmit antennas ensures
the different channels are orthogonal and results in
C =Mz (1+SNR),

MT—>oo

That is, we get an My-fold increase in capacity due to My
“spatial degrees of freedom” thanks to rich scattering

In general, an My x My i.i.d. CN(0,1) channel gives us

SNR
My

C = min(My, Mg) log( ) + const.

SIMO and MISO systems do not lead to an increase in the
number of degrees of freedom.



5.7 Capacity of MIMO with CSIT

For parallel Gaussian channels, we use “waterfilling” to

correctly distribute power over the different channels so
that capacity is achieved

Water Level

The allocated power with z, ~ N(0,02) is

ansp

We use singular value decomposition (SVD) to decompose

1 2
Pnzmax{O, I;—an},

the vector channel into a set of parallel independent scalar
Gaussian subchannels:

H=UAVH, A=diag[ Ay, ..., Ax]
Sender sends ¥ = V x , at receiver use = U y

Using this and defining N = min{ My, My }, we get

N

P, A2
C = max Zlog<1+n2n>
> Pp<P o

n=1

with waterfilling for the optimal power allocation

Low SNR: allocate all power to the best subchannel
- power gain of max 12
n

High SNR: allocate equal power to subchannel with 4,, > 0
— capacity increases linearly with rank of H:

K < min{ My, Mg} : number of spatial degrees of freedom

6. Various

Uncertainty principle

Cannot have strong limitation in time and frequency
domain

T2 = ftz O de, Bi= ffz X(HI? df
ToBo = |lx(®)||? /4

2WT Theorem

Signals which are time-limited to [—T, T] and band-limited
[—B, B] live in a 4BT —dimensional signal space

Pocket Gambler trick

H(X) =log, M - M = 2H® : 4 of constellation points

Good channel:  2H@IY) =1

Bad channel:

(H(x|y)=0)
multiple X’s can cause a certain Y
— can only distinguish which cluster of X may cause Y

“Resolution” How many clusters can | separate?”

#of X 2H@)
cluster size  2HxIy)

= 2HX)-H(xly) = 2I(x;y)

I(x; y) : number of equivalence classes /
“effective number of bits | can detect”

Mathematics

(@l = j ()2 dt

Circularly symmetric complex Gaussian RV

U=UR+]U1 ""CN(O,O'Z)

0.2
UR,UI: i.i.d NN(O,?)

Toeplitz matrix

Constant along its diagonals
- a cyclic matrix is always Toeplitz

Eigenfunctions of LTI system
Sinusoids are eigenfunctions of an LTI system

H=FAFHY, A : diagonal

By periodically repeating the signals, we can get a circular
matrix for the channel matrix

Complementary error function

Q(x)zf\/T_ne 2 du

Q) <e 7

Exponentially distributed random variable

X

1 X
flh(t‘.[)lz(x) = ? e a? ) X 2 0

1

E[e_sx]=1+s

Useful approximations

[UnN

x
= 1—§+0(x), x—0

[UnN
+
=

e = 1+x+o0)

log,(1+ x) = xlog, e, x=0

log,(1 + x) = log,(x) , x> 1



