
1

Cryptographic Protocols Summary

Andreas Biri, D-ITET 29.06.17

1. Introduction

1.1 Mathematics

Group: 〈𝐺; ∗〉 with operator ∗ ∶ 𝐺 × 𝐺 → 𝐺

 associative: 𝑥 ∗ (𝑦 ∗ 𝑧) = (𝑥 ∗ 𝑦) ∗ 𝑧

 neutral element: 𝑒 ∶ 𝑥 ∗ 𝑒 = 𝑒 ∗ 𝑥 = 𝑥 ∀ 𝑥 ∈ 𝐺

 inverse: 𝑥̂ ∶ 𝑥 ∗ 𝑥̂ = 𝑥̂ ∗ 𝑥 = 𝑒

additive group: ∗ ≜ + , 𝑒 ≜ 0 , 𝑥̂ = −𝑥

multiplicative group: ∗ ≜ × , 𝑒 ≜ 1 , 𝑥̂ = 𝑥−1

Order: element order divides group order

 |𝐺| ∶ number of elements in the group

𝑜𝑟𝑑(𝑥) ∶ 𝑥𝑜𝑟𝑑(𝑥) = 𝑥 ∗ … ∗ 𝑥 = 𝑒

 𝑥|𝐺| = 𝑥𝑘∗𝑜𝑟𝑑(𝑥) = 𝑒𝑘 = 𝑒

ℤ𝑚
∗ = { 𝑥 ∈ ℤ | 0 ≤ 𝑥 < 𝑚 , gcd(𝑥, 𝑚) = 1 }

|ℤ𝑝
∗ | = 𝑝 − 1 , 𝑝 𝑖𝑠 𝑎 𝑝𝑟𝑖𝑚𝑒

Cyclic group: a generator 𝑔 such that

𝐺 = 〈𝑔〉 = { 𝑔0, 𝑔1, … , 𝑔𝑝−1 }

Isomorphism: 〈𝐺 ; ∗〉 , 〈𝐻 ; •〉 are isomorph if a bijection

𝜓 ∶ 𝐺 → 𝐻 exists for all 𝑥, 𝑦 ∈ 𝐺 :

𝜓(𝑥 ∗ 𝑦) = 𝜓(𝑥) • 𝜓(𝑦)

Modulo calculation: 𝑥, 𝑦 ∈ ℤ are congruent modulo m if

𝑥 ≡ 𝑦 (𝑚𝑜𝑑 𝑚) ↔ 𝑥 𝑚𝑜𝑑 𝑚 = 𝑦 𝑚𝑜𝑑 𝑚

Inverse modulo m: 𝑦 ∶ 𝑥 ∗ 𝑦 ≡ 1 (𝑚𝑜𝑑 𝑚)

Quadratic residue: 𝑎 ∶ 𝑟2 ≡ 𝑎 (𝑚𝑜𝑑 𝑚)

Functions: a function 𝑓 ∶ ℕ → ℝ+ is said to be

polynomial: ∃ 𝑐 ∈ ℕ ∶ ∀ 𝑛 ≥ 𝑛0 ∶ 𝑓(𝑛) ≤ 𝑛𝑐

An algorithm is efficient if running time is polynomial

negligible: ∀ 𝑐 ∈ ℕ ∶ ∀ 𝑛 ≥ 𝑛0 ∶ 𝑓(𝑛) ≤
1

𝑛𝑐

noticeable: ∃ 𝑐 ∈ ℕ ∶ ∀ 𝑛 ≥ 𝑛0 ∶ 𝑓(𝑛) ≥
1

𝑛𝑐

𝑝𝑜𝑙𝑦 𝑥 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 : negligible (cannot be amplified)

𝑝𝑜𝑙𝑦 𝑥 𝑛𝑜𝑡𝑖𝑐𝑒𝑎𝑏𝑙𝑒 : “large enough” (can be amplified)

1.2 Terminology & Languages

Proof of Statement: There exists a solution for …

Proof of Knowledge: I know the solution for …

(PoK is automatically a PoS, as it has an explicit solution)

If P can answer to all challenges, she can just as well

compute the secret; therefore, it is a PoK as if she didn’t

know it before, she sure can know it now!

Languages & model of computation

Language L: contains all true statements / words

Decision problem: is some word member of a language L?

Witness: used for verification ∃ 𝜔 ∶ 𝑉(𝑥, 𝜔) = 1 , 𝑥 ∈ 𝐿

TM accepts L: 𝑥 ∈ 𝐿 ↔ 𝑇𝑀(𝑥) = 1 , 𝑒𝑙𝑠𝑒 𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔

TM decides L: 𝑥 ∈ 𝐿 ↔ 𝑇𝑀(𝑥) = 1

 𝑥 ∉ 𝐿 ↔ 𝑇𝑀(𝑥) = 0

Interactive Proof: IP = PSPACE (poly memory, exp. time)

2. Interactive proofs &

Zero-Knowledge protocols

Proof something to someone without transferring the

knowledge / revealing the secret to other parties

2.1 Proof systems

(𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡, 𝑝𝑟𝑜𝑜𝑓) → {𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒𝑗𝑒𝑐𝑡}

Requirements
Soundness: only true statements have proofs

 (there exists no proof for wrong statements)

Completeness: every true statement has a proof

Verifiability: verification is efficient / not too complex

Prover is unbounded, but Verifier must be efficient

Verifier must be randomized, prover may be deterministic

(however, for ZK prover must be randomized as well)

Completeness: V always accept correct proof by P with

 probability at least ≥ 3/4

Soundness: accept wrong proof with negligible probability

 (at most 𝑞 ≤ 1/2 for one round of the protocol)

2

2.2 Zero knowledge

Zero-Knowledge: Verifier learns nothing but that the

statement is true (prover knows claimed information)

► Any verifier has no more information than before

An interactive proof (𝑃, 𝑉) is zero-knowledge if ∀ 𝑉′ there

exists an efficient simulator 𝑺 producing a transcript with

the same distribution as an actual interaction 𝑉′ ↔ 𝑃

(running time of 𝑆 is polynomially bounded)

“Everything V could learn, she could also compute herself”

“Only trust results if I can choose input myself”

(as otherwise, might be simulated & not PoK)

Blackbox zero-knowledge: the transcript between 𝑆 ↔ 𝑉′

for any (unknown) 𝑉′ has the same distribution as 𝑃 ↔ 𝑉′

Honest-verifier zero-knowledge (HVZK): simulator exists for

the honest verifier 𝑉

c-simulatable: ∀ 𝑐, can efficiently generate triple (𝑡, 𝑐, 𝑟)

with the same distribution as the real protocol with 𝑐

► A 3-move c-simulatable protocol is HVZK

 (assumption: challenge is efficiently samplable)

► HVZK round with 𝑐 uniform from 𝐶, |𝐶| small, is ZK

2.3 Proof of Knowledge

Witness 𝝎: predicate Q with 𝑄(𝑥, 𝑤) = 1 for x

(“secret” / “proof” that x is a member of the language L)

Knowledge extractor: efficient algorithm K which tries to

extract ω by interacting with prover 𝑃′ on input x with

non-negligible probability (can amplify by repeating)

(can rewind the prover with the same randomness)

2-extractable: can extract ω from two accepting triples

(𝑡, 𝑐, 𝑟) and (𝑡, 𝑐′, 𝑟′) for same 𝑥, 𝑐 ≠ 𝑐′

► Interactive protocol is a proof of knowledge if ∃ a

knowledge extractor K which outputs 𝜔 with 𝑄(𝑥, 𝜔) = 1

if V accepts an interaction with 𝑃′ on input x

► Interacting proof consisting of 𝑠 2-extractable 3-move

rounds with uniformly chosen challenge is a proof of

knowledge if 1/|𝐶|𝑠 is negligible.

(repeat 𝑠 rounds; chance that prover can guess all

challenges is negligible, as 1/|𝐶|𝑠)

Pedersen: 𝑏 = 𝑔𝑥ℎ𝑟 , 𝑔 𝑎𝑛𝑑 ℎ 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠

2.4 Commitment schemes

COMMIT: P uses 𝑥 as input (V nothing)

OPEN: V outputs either 𝑥′ (accept) or ꓕ (reject)

Correctness: V always outputs 𝑥′ = 𝑥 for correct protocol

Hiding: After COMMIT, V has no information about 𝑥

Binding: After COMMIT, only one value 𝑥 will be accepted

by V in the OPEN phase (P cannot open commit differently)

Blob: 𝑏 = 𝐶(𝑥, 𝑟) for input 𝑥 and randomness 𝑟

OPEN phase uses (𝑥, 𝑟) to verify that 𝐶(𝑥, 𝑟) = 𝑏

Type H: perfectly hiding (computationally binding)

 only computationally PoK (can open two ways)

Type B: perfectly binding (computationally hiding)

 only computationally ZK (can find secret)

Trapdoor: can “cheat” binding by knowing this value

 → open blob in at least two ways

(One-way homomorphism: easy one way, hard other way)

Show zero-knowledge PoK:

1. show Graph homomorphism

2. Show 2-extractability (i.e. come up with 𝑢 and 𝑙)

3

3. Multi-Party Computation

Interact with each other without actually knowing &

trusting the other parties; act as one trusted party

3.1 Secure MPC Computation

𝑛 mutually distrusting parties 𝑃1, … , 𝑃𝑛 compute function

without revealing about individual inputs

Trusted third party (TPP): ideal, reference specification

MPC simulates TPP with multiple parties and “securely

realizes” specification if adversary cannot do more

Model: secure channels, synchronous, broadcasts

Central adversary corrupts up to 𝑡 < 𝑛 players

Passive corruption: follow protocol, but share info

Active corruption: arbitrarily deviate from protocol

Security properties
Privacy: adversary must not learn about inputs & outputs

of uncorrupted parties except what is in specification

Correctness: adversary cannot falsify computation output

Fairness: adversary cannot abort with an advantage

Robustness: adversary cannot abort protocol at all

Basic idea: create shares & calculate function based on

them so no one knows the original inputs on his own

3.2 Oblivious Transfer

Evaluate function 𝑔 ∶ 𝒳 × 𝒴 → 𝛺

1. Alice sends function table 𝑔(𝑥, ∙)

2. Bob chooses 𝑦 ∈ 𝒴 , |𝒴| = 𝑘

3. Bob evaluates 𝑔(𝑥, 𝑦) and sends result back to Alice

(Passively secure, as Alice & Bob can misbehave)

3.3 Passive protocol

CSP: Commitment Sharing Protocol

CTP: Commitment Transport Protocol

CMP: Commitment Multiplication Protocol

Sharing Schemes: passive information-theoretic

𝑡 players have no information about 𝑠

𝑡 + 1 players can collaboratively reconstruct the secret

Lagrange Interpolation: 𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 (𝛼1, 𝑠1), … , (𝛼𝑛, 𝑠𝑛)

𝑙𝑖(𝑥) = ∏
𝑥 − 𝛼𝑗

𝛼𝑖 − 𝛼𝑗

𝑛

𝑗=1
𝑗≠𝑖

 , 𝑙𝑖(𝛼𝑗) = {
 1 , 𝑖 = 𝑗
 0 , 𝑖 ≠ 𝑗

𝑔(𝑥) = ∑ 𝑙𝑖(𝑥) ∗ 𝑠𝑖

𝑛

𝑖=1

 , 𝑔𝑜𝑒𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑎𝑙𝑙 𝑛 𝑝𝑜𝑖𝑛𝑡𝑠

Sharing: 𝑝(𝑥) = 𝑠 + 𝑟1𝑥 + ⋯ + 𝑟𝑡𝑥𝑡 , 𝑝(0) = 𝑠

 𝑠𝑖 = 𝑝(𝛼𝑖) → 𝑖𝑡ℎ 𝑠ℎ𝑎𝑟𝑒 𝑓𝑜𝑟 𝑝𝑙𝑎𝑦𝑒𝑟 𝑃𝑖

Can compute secret 𝑠 uniquely with any 𝑡 + 1 shares

Addition & linear functions: compute share of 𝑐 = 𝑎 + 𝑏

𝑐𝑖 = 𝑎𝑖 + 𝑏𝑖 , 𝑎𝑠 𝑆ℎ𝑎𝑚𝑖𝑟 𝑠ℎ𝑎𝑟𝑖𝑛𝑔𝑠 𝑎𝑟𝑒 𝑙𝑖𝑛𝑒𝑎𝑟

Multiplication: compute share of 𝑐 = 𝑎 ∗ 𝑏

1. 𝑑𝑖 = 𝑎𝑖 ∗ 𝑏𝑖

2. Share 𝑑𝑖 𝑎𝑠 𝑑𝑖𝑗 𝑡𝑜 𝑃𝑗

3. Compute share of 𝑐

𝑐𝑖 = ∑ 𝜔𝑗 𝑑𝑗𝑖

𝑛

𝑗=1

 , 𝜔𝑖 = ∏
𝛼𝑘

𝛼𝑘 − 𝛼𝑗

𝑛

𝑘=1
𝑘≠𝑗

4

3.4 Active protocol

Divulging secret information: as adversary knows values of

corrupted parties anyway, no further harm done

Not sending values: corrupted party cannot send values

Reconstruction: still possible, as 𝑛 − 𝑡 ≥ 𝑡 + 1 shares

Not receiving share: use public accusation

Player not receiving a share publicly accuses dealer

Dealer then broadcasts corresponding share; if he refuses,

is disqualified and default value is assumed as input

Not sending product share: either re-run everything, or

reconstruct missing share or re-share everything

Sending wrong values: if detected from honest player,

react as if nothing had been sent

Commit to every value a player knows at every given time

Proof in zero-knowledge (e.g. with BCC Circuit SAT) that

the computation of the new commitment was correct

Homomorphic: can compute a commitment to the sum of

two values with only their individual commitments known

Used to calculate commitments to show that it is a valid

commitment for result of a linear function for free (locally)

CTP: send value & commitment to new party

 → now “committed to it” in exactly the same way

CMP: prove knowledge (& existence) of pre-image of (𝐴, 𝐶)

 allows 𝑡 < 𝑛/2 , whereas IT needs 𝑡 < 𝑛/3

Cryptographic security [𝒕 < 𝒏/𝟐]

Petersen: type H → unconditional secrecy

[𝑥, 𝛼] = 𝑔𝑥ℎ𝛼 , 𝐺 = 〈𝑔〉 = 〈ℎ〉, 𝑥, 𝛼 ∈ ℤ|𝐺|

El Gamal: type B → unconditional correctness

[𝑥, 𝛼] = (𝑔𝛼 , 𝛾𝑥ℎ𝛼) , 𝐺 = 〈𝑔〉 = 〈ℎ〉 = 〈𝛾〉

Information-theoretical security [𝒕 < 𝒏/𝟑]

Commitment scheme which is perfectly hiding & binding

by constructing a distributed scheme based on Shamir

Sharing: use 2dim function against active adversary

IT security requires 𝑡 < 𝑛/3 (more restrictive than crypto.)

4. Broadcast

Talk bilaterally, agree on what we heard; everyone hears

the same & knows this is the case for all parties

4.1 Broadcast

Allows sender to distribute a value to all players with the

guarantee that all honest player receive same value &

agree on the value sent by the receiver

Consistency: All honest players output same, agreement

Termination: All honest players decide at some point

Validity: If the sender is honest, honest players decide on

the value sent by him as input

4.2 Consensus

Every player holds an input; in the end, honest players

agree on a value & preserve so-called pre-agreement

Pre-agreement: honest parties all have same input

Consistency: All honest players output same, agreement

Termination: All honest players decide at some point

Persistency: If all honest players receive same input, keep

For 𝑡 < 𝑛/2 , the two can be transformed into each other:

5

Consensus types [𝒕 < 𝒏/𝟑]

Weak consensus: If some honest player decides on an

output 𝑦𝑖 ∈ {0,1}, all other players decide on 𝑦𝑗 ∈ {𝑦𝑖 , ꓕ}

Graded consensus: Player decide how sure they are of

their decision by giving a grade 𝑔𝑖 ∈ {0,1}

𝑔𝑖 = 0 ∶ "not sure", 𝑔𝑖 = 1 ∶ "𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑"

King consensus: If king is honest, achieve consensus

Otherwise, we keep our pre-agreement and go on

For consensus, just keep doing King consensus with all

parties once as king; due to persistency, we will keep a

correct result as soon as once as an honest party was king

As broadcast is necessary for MPC, we can show that it’s

not working for 𝑡 ≥ 𝑛/3 in information-theoretic setting

4.3 Adversary structure

Multiplication requires 𝑄2(𝑃, 𝑍) so that at least one party

exists which knows 𝑎𝑝𝑏𝑞 ∀ 1 ≤ 𝑞, 𝑝 ≤ 𝑙

Active Protocol

Again, commit to everything for cryptographic security

Do it information-theoretically:

1. Consistency check: send value to other 𝑃𝑖 ∈ 𝑍𝑞
̅̅ ̅

2. Accusation if not everyone is happy & broadcast

Shared-Reconstruction requires 𝑄3(𝑃, 𝑍)

6

5. Algorithms & Protocols

5.1 Interactive Proofs & ZK PoK

Repeat sequentially → ZK (|𝐶| = {0,1} small)

Repeat in parallel → not ZK (|𝐶| = {0,1}𝑠 large)

Use trapdoors to get around this problem (don’t need to

repeat, as poly-time simulator can open blob how it wants)

Challenge space 𝐶 ∶ 𝑐 ∈𝑅 {0, … , |𝐻| − 1} , |𝐻| = 2𝑞

|𝐶| not polynomially bounded, chance to guess small

ZK by restricting challenge space, e.g. 𝑐 ∈𝑅 {0, … , 100}

NP-complete: can reduce any NP problem to this

► ZK, PoK → ZK proof for all NP problems

7

5.2 Multi-Party Computation

5.3 Broadcast

6. Papers

6.1 Maurer: Unifying ZK PoK

6.2 BCC: Minimum-Disclosure PoK

Challenges:

c = 0: show scrambled circuit

c = 1: unblind rows of the truth table which are used

 check that output = 1 (“valid proof”)

6.3 Maurer: Secure MPC made simple

