Cryptographic Protocols Summary
Andreas Biri, D-ITET

29.06.17
1. Introduction

1.1 Mathematics

Group: (G; *) with operator *: G X G - G

associative: xx(y*xz)=(x*xy)*z

neutral element: e:xxe=exx=x Vx€EG

inverse: X:x*xX=X*xx=e¢e
additive group: * 2 4+, e 20,X= —x
multiplicative group: *x 2 X, e21,%x=x1

Order: element order divides group order
|G| : number of elements in the group

ord(x): x4 =xx xx=¢e

x1Gl = xkrord(®) = ok — o

Zy, ={x€ Z]|0<x<m,gcd(x,m)=1}
Ly

=p-—-1, pis aprime

Cyclic group: a generator g such that

G=(g9)=1{9%g"...9"7"}

Isomorphism: (G ; *) ,(H ; ¢) are isomorph if a bijection
Y :G - Hexistsforallx,y € G :

Y xy) = Px) «)
Modulo calculation: x,y € Z are congruent modulo m if
x =y (modm) & xmodm=ymodm
Inverse modulo m: y: x*y =1 (modm)

Quadratic residue: a: 1% =a (modm)

Functions: a function f : N - R7 is said to be
polynomial: dce N:Vn=ny: f(n) <nc
An algorithm is efficient if running time is polynomial

negligible: VceEN:Vn=ng: f(n)< %

. 1
noticeable: dce N:Vvn=ny: f(n)= —

poly x negligible : negligible (cannot be amplified)
poly x noticeable : “large enough” (can be amplified)

1.2 Terminology & Languages

Proof of Statement: There exists a solution for ...
Proof of Knowledge: | know the solution for ...
(PoK is automatically a PoS, as it has an explicit solution)

If P can answer to all challenges, she can just as well
compute the secret; therefore, it is a PoK as if she didn’t
know it before, she sure can know it now!

Languages & model of computation

Language L: contains all true statements / words
Decision problem: is some word member of a language L?
Witness: used for verification I w: V(x,w) =1, x €L

TM accepts L:
TM decides L:

x €L & TM(x) =1,else something
x€EL oTM(x)=1
x¢ LoTM(x) =0

Complexity Classes
e P = {L : dpolytime TM that accepts L}
e NP = {L : 3 non-det. polytime TM that accepts L}
NP = {L:Jpoly TMs.t (x€L < Jw: TM(z,w)=1)}
— Thm 1.8: These two definitions are equivalent!
e NP-hard = {L : VL' € NP : L' can be reduced to L}
o NP-Complete = NP n NP-hard
e PSPACE = {L : 3 TM that accepts L with poly memory (in any time)}

Interactive Proof: IP = PSPACE (poly memory, exp. time)

2. Interactive proofs &

Zero-Knowledge protocols

Proof something to someone without transferring the
knowledge / revealing the secret to other parties

2.1 Proof systems

(statement, proof) — {accept,reject}

Requirements
Soundness: only true statements have proofs

(there exists no proof for wrong statements)
Completeness: every true statement has a proof
Verifiability: verification is efficient / not too complex

Static Proof

Prover P Verifier V
knows statement s, knows statement s
proof p p

——— (s,p) — {accept, reject}

Interactive Proof

Prover P Verifier V
knows statement s, knows statement s
proof p g

A mo
g

(s,m1,..., myg) — {accept, reject}

Prover is unbounded, but Verifier must be efficient
Verifier must be randomized, prover may be deterministic
(however, for ZK prover must be randomized as well)

Completeness: V always accept correct proof by P with
probability at least > 3/4

Soundness: accept wrong proof with negligible probability
(at most g < 1/2 for one round of the protocol)

2.2 Zero knowledge

Zero-Knowledge: Verifier learns nothing but that the
statement is true (prover knows claimed information)
» Any verifier has no more information than before

An interactive proof (P, V) is zero-knowledge if V V' there
exists an efficient simulator S producing a transcript with
the same distribution as an actual interaction V' < P

(running time of S is polynomially bounded)

“Everything V could learn, she could also compute herself”

“Only trust results if | can choose input myself”
(as otherwise, might be simulated & not PokK)

Blackbox zero-knowledge: the transcript between S & V'
for any (unknown) V' has the same distributionas P & V'

Honest-verifier zero-knowledge (HVZK): simulator exists for
the honest verifier V

c-simulatable: V c, can efficiently generate triple (t,c,7)
with the same distribution as the real protocol with ¢

» A 3-move c-simulatable protocol is HVZK
(assumption: challenge is efficiently samplable)

» HVZK round with ¢ uniform from C, |C| small, is ZK

Def: (PV) is zero-knowledge (ZK) < ¥V’ 3S:
i) Transcript T of (P € V') and output T" of S are indistinguishable,
ii) Running time of S is polynomially bounded in running time of V.

Def: (P.V) is black-box zero-knowledge (BB-ZK) < 3S vV V"

i) Transcript T of (P «» V') and output T" of S in (S« V') are indist.,
i) Running time of S is polynomially bounded.
P 1;} v S

SR ———= AV
i

real protocol T simulation T BB-simulation

Def: (PV) is honest-verifier zero-knowledge (HVZK) if S exists for V' = V.

2.3 Proof of Knowledge

Witness w: predicate Q with Q(x,w) = 1 for x
(“secret” / “proof” that x is a member of the language L)

Knowledge extractor: efficient algorithm K which tries to
extract w by interacting with prover P’ on input x with
non-negligible probability (can amplify by repeating)

(can rewind the prover with the same randomness)

2-extractable: can extract w from two accepting triples
(t,c,r)and (t,c',r'") forsamex, ¢ # ¢’

» Interactive protocol is a proof of knowledge if 3 a
knowledge extractor K which outputs w with Q(x,w) =1
if V accepts an interaction with P’ on input x

P Interacting proof consisting of s 2-extractable 3-move
rounds with uniformly chosen challenge is a proof of
knowledge if 1/|C|*° is negligible.

(repeat s rounds; chance that prover can guess all
challenges is negligible, as 1/|C|°®)

Commitment Schemes

Name Setup Value Commit Type | Comments

Gl Gy, G1 x€{0,1} |B=nGyml| H |Trapdoor: o
G =0Goo

DL |H| = q zEL, b= h* B |OR:LSB(x)
H={(h)

Pedersen | |H| = ¢ x € Ly b= g"h" H | Trapdoor DL 4h
H=(g)=(h)

QR B m = pq, re{0.1} b= P2t B
t e QNR,
(a) =1

QR H m = pq, e {0,1} | b=rZ" H | Trapdoor /%
te QR

Pedersen: b=g*h", gandh generators

2.4 Commitment schemes

COMMIT: P uses x as input (V nothing)
OPEN: V outputs either x’ (accept) or L (reject)

Correctness: V always outputs x’ = x for correct protocol
Hiding: After COMMIT, V has no information about x

Binding: After COMMIT, only one value x will be accepted
by V in the OPEN phase (P cannot open commit differently)

Blob: b = C(x,r) forinputx andrandomnessr

OPEN phase uses (x,) to verify that C(x,r) = b

Type H: perfectly hiding (computationally binding)
only computationally PoK (can open two ways)

Type B: perfectly binding (computationally hiding)
only computationally ZK (can find secret)

Trapdoor: can “cheat” binding by knowing this value
— open blob in at least two ways

One-Way Group Homomorphisms (OWGH)

Setting: Groups (G, *) and (H. ®)

Definition: A group homomorphism is a function f with:
fr G H, flaxb)= f(a)® f(b)

Notation: We write [«] for f(a), hence

[1: & — H, [axb]=[a]@][b]

(One-way homomorphism: easy one way, hard other way)

Knowledge Extractor of OWGH PoK

Theorem 1.5: Protocol round is 2-extractable if
HeZueGsl (1) Vey,cpeCep # o gcd(e] —ep,) =1
@) [u] =2

Show zero-knowledge PoK:

1. show Graph homomorphism
2. Show 2-extractability (i.e. come up with u and [)

3. Multi-Party Computation

Interact with each other without actually knowing &
trusting the other parties; act as one trusted party

3.1 Secure MPC Computation

n mutually distrusting parties P,, ..., B, compute function

without revealing about individual inputs

Trusted third party (TPP): ideal, reference specification
MPC simulates TPP with multiple parties and “securely
realizes” specification if adversary cannot do more

Model: secure channels, synchronous, broadcasts

Central adversary corrupts up to t < n players

Passive corruption: follow protocol, but share info
Active corruption: arbitrarily deviate from protocol

Security properties
Privacy: adversary must not learn about inputs & outputs
of uncorrupted parties except what is in specification

Correctness: adversary cannot falsify computation output
Fairness: adversary cannot abort with an advantage

Robustness: adversary cannot abort protocol at all

%’JM‘?]
%y (j;« 8D
‘!W‘P
) Ty Ir11] T12 ' Tip
[e} . .
ey T2 [T21 T22 0 T2
™ o _
{@) rn Tpl Tp2 - Ton
T
Y1 oy2 v oYn Y= DY
i=1

Basic idea: create shares & calculate function based on
them so no one knows the original inputs on his own

3.2 Oblivious Transfer

oT Sender Receiver
r=0: s
r=1: I
—>
r €g 10,
1-2-0T Sender Receiver

B & 008
1-k-0T Sender

%%@?%l L

Evaluate functiong : X XY — 12

Receiver

1. Alice sends function table g(x, -)
2.Bobchoosesy € Y, |Y| =k
3. Bob evaluates g(x, y) and sends result back to Alice

(Passively secure, as Alice & Bob can misbehave)

3.3 Passive protocol

Share input Reconstruct Output
e P, hasinput s. e aisshared by aq,...,an.
e P selects rq, ...,y atrandom. e every P sends a; to F,.

e Fcomp.a= L(ay, ..,

s 8
P, comp. (;1) = .4("1)
L Sn l:[
e F; sends s; to every F;.
Addition and linear functions £
e a b ...shared by ay,....an, by.....by, efc.
e every P, computes ¢; = L(a;, b;,...).
Multiplication

e a, baresharedby aq,...,an, b1, ..., bn.

e every P; computes d; = a;b;.
e every P, shares d; — djq,..., dip.
e every P computes ¢; = £(dyj, ..., dy).

CSP: Commitment Sharing Protocol
CTP: Commitment Transport Protocol

CMP: Commitment Multiplication Protocol

an).

Setting Adv. Type | Condition
cryptographic passive t<n
cryptographic active t<n/2
information-theoretic | passive t<n/2
information-theoretic | active t<n/3
i.-t. with broadcast active t<n/2

Sharing Schemes: passive information-theoretic
t players have no information about s
t + 1 players can collaboratively reconstruct the secret

Lagrange Interpolation: n points (ay,s;), ..., (&, Sp)

n

x—aj
Lix) = | |)
L a; — a;

j=1

1, i=j

l-a-z{ .

g ‘(1) 0, L #]
j#i

gx) = z l;(x) xs; , goesthrough all n points

i=1

Sharing: p(x) =s+nrx+-+7x‘, p(0)=s

s;=p(a;) - i share for player P;

Can compute secret s uniquely with any t 4+ 1 shares

Addition & linear functions: compute shareofc =a + b

ci=a;+b;, as Shamir sharings are linear

Multiplication: compute shareof c = a * b
1. di =a; * bi
2.Share d; as d;; to P;

3. Compute share of ¢

n n
Ay
C; = (UJ d]l.) w; = _—
- 1A — Q;
j=1 k=1
k#j

3.4 Active protocol

Divulging secret information: as adversary knows values of
corrupted parties anyway, no further harm done

Not sending values: corrupted party cannot send values
Reconstruction: still possible, asn —t > t + 1 shares

Not receiving share: use public accusation

Player not receiving a share publicly accuses dealer
Dealer then broadcasts corresponding share; if he refuses,
is disqualified and default value is assumed as input

Not sending product share: either re-run everything, or
reconstruct missing share or re-share everything

Sending wrong values: if detected from honest player,
react as if nothing had been sent

Commit to every value a player knows at every given time
Proof in zero-knowledge (e.g. with BCC Circuit SAT) that
the computation of the new commitment was correct
Homomorphic: can compute a commitment to the sum of
two values with only their individual commitments known
Used to calculate commitments to show that it is a valid

commitment for result of a linear function for free (locally)

CTP: send value & commitment to new party
— now “committed to it” in exactly the same way

CMP: prove knowledge (& existence) of pre-image of (4, C)
allows t < n/2, whereas IT needs t < n/3

Cryptographic security [t < n/2]

Petersen: type H — unconditional secrecy

[x,a] = g*h%, G = (g)=(h), X,a € Zig

El Gamal: type B — unconditional correctness

[x,a] = (g%, v*h*), G ={(g)=<(h)=(y)

Information-theoretical security [t < n/3]

Commitment scheme which is perfectly hiding & binding
by constructing a distributed scheme based on Shamir
Sharing: use 2dim function against active adversary

Commit Protocol

1. Distribution
D selects random polynomial
i t .
floy) =3 % fijz'y!, with foo = s,
i=0j=0

and sends h;(x) = f(x,0;), ki(y)= fla; y)to P
2. Consistency checks
YF;, Pj: P; sends ki(a;) to P;, Pj complains if k;(a;) # hj(a;).
D broadeasts f(a;, a;).
3. Accusation
W P;:if P; has received contradicting values from D: accuse D.
D broadcasts h;(x) and k;(y).
Repeat until no further accusation.

4. Compute share
If > t accusations: disqualify dealer.
If < t accusations: s; = k;(0).

Open Protocol

1. Open
D broadcasts g(x).
2. Check consistency
P; accuses dealer if g(a;) # s;.
3. Compute secret
If < t accusations: s = g(0).
If = t accusations: disqualify dealer.

Generic Commitment Multiplication Protocol

0. Starting point: D is committed to a, b,eby [a], [b],and [c].

1. CSP of a. b with degree ¢ 2. CSP of ¢ with degree 2t

= f(x),g(x) use h(z) = f(x)g(x)
AT . dy s d; = a;b;| . h(z)
G G oo o !
3. Checks
VP;. d; = a;b;, broadcast accusation bit.
On accusation: Open [@i],[:], [di], check a;b; = d;.

IT security requires t < n/3 (more restrictive than crypto.)

4. Broadcast

Talk bilaterally, agree on what we heard; everyone hears
the same & knows this is the case for all parties

4.1 Broadcast

Allows sender to distribute a value to all players with the
guarantee that all honest player receive same value &
agree on the value sent by the receiver

Consistency: All honest players output same, agreement
Termination: All honest players decide at some point

Validity: If the sender is honest, honest players decide on
the value sent by him as input

4.2 Consensus

Every player holds an input; in the end, honest players
agree on a value & preserve so-called pre-agreement

Pre-agreement: honest parties all have same input

Consistency: All honest players output same, agreement
Termination: All honest players decide at some point

Persistency: If all honest players receive same input, keep

Fort < n/2,the two can be transformed into each other:

Broadcast vs Consensus

Broadcast: (., 1,...,)= (y1,---s Yn)
Consensus: (zq,...,75) — (y1,-... Yn)

Broadcast from Consensus

1. Py. send xto every P;, P; receives x;
2. (y1,...,yn) = Consensus(xq,...,: Ty,)
3. VP return y;

Consensus from Broadcast

1. ¥P;: Broadcast(z;)
2. ¥P;: return y; = majority of received x;'s

Consensus types [t <n/3 |

Weak consensus: If some honest player decides on an
output y; € {0,1}, all other players decide on y; € {y;, 1}

Graded consensus: Player decide how sure they are of
their decision by giving a grade g; € {0,1}

gi = 0 : "not sure”, gi = 1 : "consistency achieved"

King consensus: If king is honest, achieve consensus
Otherwise, we keep our pre-agreement and go on

For consensus, just keep doing King consensus with all
parties once as king; due to persistency, we will keep a
correct result as soon as once as an honest party was king

As broadcast is necessary for MPC, we can show that it’s
not working for t = n/3 in information-theoretic setting

4.3 Adversary structure

Adversary Structure

Notation
|Adv. chooses one of them|
e Partyset P, [P| =n
¢ Monotone adversary structure Z = {71, Z5, ..., Z,y c 2P

(Monctone: Z € Z, 2! C Z = Z' € 2)

Definitions
e Q%(P,2):=VZ,Z,€ 2. Z1UZs % P (notwo sets add up to P)
¢ Q3P 2) & NZ,Zs,Z3€ 2 21U Ty UZ3 %P
(no three sets add up to P)

Results Threshold Gen.Adv.
e it passive: t<n/2 QAP Z)[HMI7, Mau02]
e it active: t<n/3 Q3P Z)[HM7, Mau02]

e crypto. active: t < n/2 Q2(P,Z) [HMI7, Mau02]

Passive Protocol

Share Input
e P;hasinput a.
e P, selects random summands

Reconstruct Output
e aisshared by aq,...,ap.
e Forall g: afixed P; € Z,

ay,..,ar sty ag=a. B sends aq to P,.
e Pjsends aqtoevery P;in Z, e P, computes a = Y ay.
Addition
e a, bshared by ay,...,ay, by,..., by

e Forall ¢: Every P; € 7,, computes cq = aq + by.
Multiplication

e a,bsharedby aj.....,ap, by,by.

o Forall p, q: Afixed P, € Z, N Z, computes and shares aby.

e Compute [c] = > 3 [apbg].

Multiplication requires Q2(P, Z) so that at least one party
exists which knows a,b, V1<gq,p<I

Active Protocol
Again, commit to everything for cryptographic security

Do it information-theoretically:

1. Consistency check: send value to other P; € Z_q
2. Accusation if not everyone is happy & broadcast

Active Sharing Protocol

Goal: Share input value s of party ;.

Share(P;, s)
1. Pp selects random summands s; + ...+ sy s.t. s =3 s
2. Forall1 < g < ¢do:
a) P sends s, to all parties in Z.
b) The parties in Z, exchange the received values.
If P, € Z, sees different values: complain using broadcast.
c) Ifany P, € Z, complained: P, broadcasts sq.
Otherwise each F; € Z, takes the value received in step 2a) for s.

Active Reconstruction

Goal: Reconstruct [s] towards P,
Share-Reconstruction(F,, [s]. q)
1. Every party P, € Z, sends s, to Pj.

2. Let v; be the value P, received from F; Z,..
P outputs v such that { P, | v; # v} € Z.

Reconstruction(F;. [s])
1. For all ¢ invoke s, «— Share-Reconstruction(F;, [s]. ¢).
2. Proutputs s = s1 + ... + sp.

Shared-Reconstruction requires Q3 (P, Z)

Active Multiplication Protocol

Goal: Compute [c] = [ab]
Multiplication([a], [b])
1. Forall1 < gq,p < {do:
a) Every party P; € Z, N Z, shares ayb, as [v,].
b) Let P; be a fixed party in Z,, N Z,.
Compute and open [v!,,] — [v},] for all P € ZpnZy.

pPg

c) If all differences are zero: Set [v)] = [z-,l,,,] as a sharing for apby.
Otherwise, reconstruct a; and b, (using Share-Reconstruction).

Define [vy] as the sharing with summands (apby, 0. 0).

2. Compute [c] = 3" [vpql.

Guillou-Quisquater — One Round of the Protocol

5. Algorithms & Protocols

Fiat-Shamir — One Round of the Protocol .
Setting: m is an RSA-Modulus.

i Goal: Prove knowledge of an e-th root of a given = € Z7,.
5.1 Interactive Proofs & ZK PoK Setting: m is an RSA-Modulus. 9 ‘ 9
Graph Isomorphism — One Round of the Protocol Goal: Prove knowledge of a square root of a given = € Z,,. Peggy Vic
: knows x s.t. ¢ = z (mod knows = € Z
Setting: Given two graphs Gg and Gy. Peggy Vic 7 1 (m) .
Goal: Prove that Gy and G, are isomorphic. knows = s.t. 2 = = (mod m) knows = € Z7, k €p L.
t
. t=k" R
Pegay Vic k g Ly, ,
= 1.2 <) .,
knows Gg, G1, o 81. G = 0Goo 1 knows Gg and G, t=k EE—— < cep{0...., e—1}
c T 7
) : D , =k a —_— =
pick random permutation = c€r{0,1} r=hkea =t
T = W_Ggﬂ_l —Tb- r=k-z" —,b- .r'2‘=?f-:r
- ep {0.1}
. PoK of Pre-Image of OWGH — One Round of the Protocol
c=0:p=n Repeat sequentially - ZK (|C] = {0,1} small)
_ 4 . 7 _ . _ R ; . .
: p=ma! —_— L e c=0:T £ pGop ! Repeat in parallel > notZK (|C| = {0,1}° large) Setting: Groups & and H, group homomorphism [] : (G, +) — (H. ®).
7
ce=1:T=pGp ! Goal: Prove knowledge of pre-image of = € H.
Use trapdoors to get around this problem (don’t need to
. . . Peggy Vie
repeat, as poly-time simulator can open blob how it wants)
knows = € G s, [x] = = knows = € H
k EH (;.
t
Graph-NON-Isomorphism — One Round of the Protocol Schnorr — One Round of the Protocol t = [k] —_—
" epecu
Setting: Given two graphs Gy and G;. Setting: Cyclic group I = (h), |H| = ¢ prime. - .
Goal: Prove that Go and G, are not isomorphic. Goal: Prove knowledge of the discrete logarithm of a given = € H. r=kxzt —] =t
Peggy Vic Peggy Vic
knows Gy and G knows Ggp and G knows = € Zy st " = 2 knows z € H
0 ! © ! ! Hamiltonian Cycles — One Round of the Protocol
b ep {0, 1}, = at random kep Zy,
T) t
- T =mGm ! t = ht _ Peggy Vie
T ~ Goie =0, -— cep{o..... [H| -1} knows HC in G knows G
. (& 7
~ o= —_— = : .7 .
T~ Gyt 1 ¢ b r=kk+cr —}b- h' L. z€ ratrand., H = #Gr— !
.., C
Commit H — C'y, .., O ——2 0%
Challenge space C : c €, {0,...,|H| — 1}, |H| = 2¢ - cepfo1)
|C| not polynomially bounded, chance to guess small ¢ — 0 : Decommit 1 Az, g2 e
ZK by restricting challenge space, e.g. ¢ €z {0, ...,100} e =1 : Decommit HC iy dyyedy, Z He

NP-complete: can reduce any NP problem to this

» ZK, PoK — ZK proof for all NP problems

5.2 Multi-Party Computation 5.3 Broadcast 6. Pa pers

1-2-OST based on RSA and DES Protocol Weak Consensus
Sender Receiver 6.1 Maurer: Unifying ZK PoK
messages so. s1 selector b € {0,1} WeakConsensus(zy, ... en) =y, n)

1. VP send x; to every P;

generate RSA-Keys
0 if#Zeros > n —t

no, eo, do and ny, e1, d; 2. %P y, =11 ff#Ones>n —t
. s no, €, N1, € : FA =
with ng = ny B0, 1 else
k at random, 3. ¥P; returny;
~— u= k% (mod ny)
-). - . .
6.2 BCC: Minimum-Disclosure PoK

ko =u% (mod ng) Protocol Graded Consensus

ky =u’t (mod nj) How to Scramble the Truth Tables

yo = DESy, (s0) GradedConsensus(z. ... ,:)= (181) (ynsgn))
Yo-
y1 = DESy, (51) — YU, =DES; (y) 1. (21.....2n) = WeakConsensus(z1,: rn) 10
2. VP;: send z; to every P;.
Commitment Sharing Protocol . . {0 oo
Y))) 3. VP .. — |0 if#Zeros > #Ones [ol1][o
Starting point: Dealer is committed to some value s. Yy = 1 if #Zeros = #Ones / [Tolo
11][

Goal: Every player has a share of s and is committed to it.

1. The dealer chooses the random coetflicients used in the secret sharing scheme _ { 1 if #!,"3 >n—t 1.
and commits to them. 9 = 0 else
2. Each player (locally) computes the commitments to all shares (using the 1. XOR every wire with a random bit
homomorphic property).
3. For every player, the dealer transfers the commitment to the share corre- 4. VP;. return (y;.g,) 2. Permute the rows randomly
sponding to that player using the CTP. R)
Protocols King Consensus (King 7.) and Consensus
KingConsensus; (1,xn) — (y1...-. yn)

Challenges:

1. ((=1,91)s- -, (2n, gn)) = GradedConsensus(xq,. ..,)

2. P send z; to every P
¢ = 0: show scrambled circuit

3.YP;: y :{ 2 g =1
7T g else ¢ = 1: unblind rows of the truth table which are used
4. VP; returny; check that output = 1 (“valid proof”)
Consensus(x1q,....: rn) = (y1,..., Yn)
1. fork=11ot+4 1do
(x1,...,¢ r,,) = KingConsensus,,(xq,....)
od

2. VP returna; .
6.3 Maurer: Secure MPC made simple

