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Cryptographic Protocols Summary 

Andreas Biri, D-ITET                              29.06.17 

1. Introduction 

1.1 Mathematics 

Group:   〈𝐺; ∗〉  with operator   ∗ ∶ 𝐺 × 𝐺 → 𝐺 

 associative: 𝑥 ∗ (𝑦 ∗ 𝑧) = (𝑥 ∗ 𝑦) ∗ 𝑧 

 neutral element: 𝑒 ∶ 𝑥 ∗ 𝑒 = 𝑒 ∗ 𝑥 = 𝑥     ∀ 𝑥 ∈ 𝐺 

 inverse: 𝑥̂ ∶ 𝑥 ∗  𝑥̂ =  𝑥̂ ∗ 𝑥 = 𝑒 

additive group: ∗  ≜  + , 𝑒 ≜  0 , 𝑥̂ =   −𝑥 

multiplicative group: ∗  ≜   × , 𝑒 ≜  1 , 𝑥̂ =  𝑥−1 

Order:     element order divides group order 

                 |𝐺| ∶ number of elements in the group 

𝑜𝑟𝑑(𝑥) ∶   𝑥𝑜𝑟𝑑(𝑥) = 𝑥 ∗ … ∗ 𝑥 = 𝑒     

                    𝑥|𝐺|       = 𝑥𝑘∗𝑜𝑟𝑑(𝑥) = 𝑒𝑘 = 𝑒 

 

ℤ𝑚
∗   = { 𝑥 ∈  ℤ | 0 ≤ 𝑥 < 𝑚 , gcd(𝑥, 𝑚) = 1 } 

|ℤ𝑝
∗ |  = 𝑝 − 1  , 𝑝 𝑖𝑠 𝑎 𝑝𝑟𝑖𝑚𝑒 

Cyclic group: a generator 𝑔 such that 

𝐺 =  〈𝑔〉 =  { 𝑔0, 𝑔1, … , 𝑔𝑝−1 } 

Isomorphism: 〈𝐺 ; ∗〉 , 〈𝐻 ; •〉  are isomorph if a bijection 

𝜓 ∶ 𝐺 → 𝐻 exists for all 𝑥, 𝑦 ∈ 𝐺 : 

𝜓(𝑥 ∗ 𝑦) =  𝜓(𝑥)  •  𝜓(𝑦) 

Modulo calculation: 𝑥, 𝑦 ∈  ℤ are congruent modulo m if 

𝑥 ≡ 𝑦  (𝑚𝑜𝑑 𝑚)     ↔   𝑥 𝑚𝑜𝑑 𝑚 = 𝑦 𝑚𝑜𝑑 𝑚 

Inverse modulo m: 𝑦 ∶      𝑥 ∗ 𝑦 ≡ 1  (𝑚𝑜𝑑 𝑚) 

Quadratic residue: 𝑎 ∶      𝑟2  ≡ 𝑎  (𝑚𝑜𝑑 𝑚) 

Functions: a function 𝑓 ∶  ℕ →  ℝ+ is said to be 

polynomial: ∃ 𝑐 ∈  ℕ ∶ ∀ 𝑛 ≥ 𝑛0 ∶    𝑓(𝑛) ≤ 𝑛𝑐  

An algorithm is efficient if running time is polynomial 

negligible: ∀ 𝑐 ∈  ℕ ∶ ∀ 𝑛 ≥ 𝑛0 ∶    𝑓(𝑛) ≤
1

𝑛𝑐 

noticeable: ∃ 𝑐 ∈  ℕ ∶ ∀ 𝑛 ≥ 𝑛0 ∶    𝑓(𝑛) ≥
1

𝑛𝑐 

𝑝𝑜𝑙𝑦 𝑥 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 : negligible     (cannot be amplified) 

𝑝𝑜𝑙𝑦 𝑥 𝑛𝑜𝑡𝑖𝑐𝑒𝑎𝑏𝑙𝑒 : “large enough” (can be amplified) 

1.2 Terminology & Languages 

Proof of Statement:  There exists a solution for … 

Proof of Knowledge: I know the solution for … 

( PoK is automatically a PoS, as it has an explicit solution) 

If P can answer to all challenges, she can just as well 

compute the secret; therefore, it is a PoK as if she didn’t 

know it before, she sure can know it now! 

Languages & model of computation 
 

Language L: contains all true statements / words 

Decision problem: is some word member of a language L? 

Witness: used for verification    ∃ 𝜔 ∶  𝑉(𝑥, 𝜔) = 1 , 𝑥 ∈ 𝐿 

TM accepts L: 𝑥 ∈ 𝐿 ↔ 𝑇𝑀(𝑥) = 1 , 𝑒𝑙𝑠𝑒 𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔 

TM decides L: 𝑥 ∈ 𝐿 ↔ 𝑇𝑀(𝑥) = 1 

                               𝑥 ∉  𝐿 ↔ 𝑇𝑀(𝑥) = 0  

 
Interactive Proof:   IP = PSPACE (poly memory, exp. time) 

2. Interactive proofs &  

Zero-Knowledge protocols 

Proof something to someone without transferring the 

knowledge / revealing the secret to other parties 

2.1 Proof systems 

(𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡, 𝑝𝑟𝑜𝑜𝑓) → {𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒𝑗𝑒𝑐𝑡} 

Requirements 
Soundness: only true statements have proofs 

                      (there exists no proof for wrong statements) 

Completeness: every true statement has a proof 

Verifiability: verification is efficient / not too complex 

 

Prover is unbounded, but Verifier must be efficient 

Verifier must be randomized, prover may be deterministic 

(however, for ZK prover must be randomized as well) 

Completeness: V always accept correct proof by P with  

                             probability at least ≥ 3/4  

Soundness: accept wrong proof with negligible probability  

                    (at most 𝑞 ≤ 1/2 for one round of the protocol) 
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2.2 Zero knowledge 

Zero-Knowledge: Verifier learns nothing but that the 

statement is true (prover knows claimed information) 

► Any verifier has no more information than before 

An interactive proof (𝑃, 𝑉) is zero-knowledge if ∀ 𝑉′ there 

exists an efficient simulator 𝑺 producing a transcript with 

the same distribution as an actual interaction  𝑉′  ↔ 𝑃 

( running time of 𝑆 is polynomially bounded) 

“Everything V could learn, she could also compute herself” 

“Only trust results if I can choose input myself” 

(as otherwise, might be simulated & not PoK) 

Blackbox zero-knowledge: the transcript between 𝑆 ↔ 𝑉′  

for any (unknown) 𝑉′ has the same distribution as 𝑃 ↔ 𝑉′ 

Honest-verifier zero-knowledge (HVZK): simulator exists for 

the honest verifier 𝑉 

c-simulatable: ∀ 𝑐, can efficiently generate triple (𝑡, 𝑐, 𝑟) 

with the same distribution as the real protocol with 𝑐 

► A 3-move c-simulatable protocol is HVZK 

     ( assumption: challenge is efficiently samplable) 

► HVZK round with 𝑐 uniform from 𝐶, |𝐶| small, is ZK 

 

 

2.3 Proof of Knowledge 

Witness 𝝎:  predicate Q with 𝑄(𝑥, 𝑤) = 1 for x 

(“secret” / “proof” that x is a member of the language L) 

Knowledge extractor: efficient algorithm K which tries to 

extract ω by interacting with prover 𝑃′ on input x with 

non-negligible probability (can amplify by repeating) 

(can rewind the prover with the same randomness) 

2-extractable: can extract ω from two accepting triples 

(𝑡, 𝑐, 𝑟) and (𝑡, 𝑐′, 𝑟′) for same 𝑥,   𝑐 ≠ 𝑐′ 

► Interactive protocol is a proof of knowledge if ∃ a 

knowledge extractor K which outputs 𝜔 with 𝑄(𝑥, 𝜔) = 1 

if V accepts an interaction with 𝑃′ on input x 

► Interacting proof consisting of 𝑠 2-extractable 3-move 

rounds with uniformly chosen challenge is a proof of 

knowledge if 1/|𝐶|𝑠 is negligible. 

(repeat 𝑠 rounds; chance that prover can guess all 

challenges is negligible, as 1/|𝐶|𝑠 ) 

 

 

 

Pedersen: 𝑏 = 𝑔𝑥ℎ𝑟  ,        𝑔 𝑎𝑛𝑑 ℎ 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠 

2.4 Commitment schemes 

COMMIT: P uses 𝑥 as input (V nothing) 

OPEN:    V outputs either 𝑥′ (accept) or ꓕ (reject) 

Correctness: V always outputs 𝑥′ = 𝑥 for correct protocol 

Hiding: After COMMIT, V has no information about 𝑥 

Binding: After COMMIT, only one value 𝑥 will be accepted 

by V in the OPEN phase (P cannot open commit differently) 

Blob:    𝑏 = 𝐶(𝑥, 𝑟)    for input 𝑥 and randomness 𝑟 

OPEN phase uses (𝑥, 𝑟) to verify that 𝐶(𝑥, 𝑟) = 𝑏 

Type H: perfectly hiding   (computationally binding) 

 only computationally PoK (can open two ways) 

Type B: perfectly binding (computationally hiding) 

 only computationally ZK (can find secret) 

Trapdoor: can “cheat” binding by knowing this value 

                   → open blob in at least two ways 

 

(One-way homomorphism: easy one way, hard other way) 

 

Show zero-knowledge PoK: 

1. show Graph homomorphism 

2. Show 2-extractability (i.e. come up with 𝑢 and 𝑙 )  
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3. Multi-Party Computation 

Interact with each other without actually knowing & 

trusting the other parties; act as one trusted party 

3.1 Secure MPC Computation 

𝑛 mutually distrusting parties 𝑃1, … , 𝑃𝑛 compute function 

without revealing about individual inputs 

Trusted third party (TPP): ideal, reference specification 

MPC simulates TPP with multiple parties and “securely 

realizes” specification if adversary cannot do more 

Model: secure channels, synchronous, broadcasts 

Central adversary corrupts up to 𝑡 < 𝑛 players 

Passive corruption: follow protocol, but share info 

Active corruption: arbitrarily deviate from protocol 

Security properties 
Privacy: adversary must not learn about inputs & outputs 

of uncorrupted parties except what is in specification 

Correctness: adversary cannot falsify computation output 

Fairness: adversary cannot abort with an advantage 

Robustness: adversary cannot abort protocol at all 

 

Basic idea: create shares & calculate function based on 

them so no one knows the original inputs on his own 

3.2 Oblivious Transfer 

 

Evaluate function 𝑔 ∶  𝒳 × 𝒴 →  𝛺 

1. Alice sends function table 𝑔(𝑥, ∙ ) 

2. Bob chooses 𝑦 ∈  𝒴 , |𝒴| = 𝑘 

3. Bob evaluates 𝑔(𝑥, 𝑦) and sends result back to Alice 

(Passively secure, as Alice & Bob can misbehave) 

3.3 Passive protocol 

 

CSP: Commitment Sharing Protocol 

CTP: Commitment Transport Protocol 

CMP: Commitment Multiplication Protocol 

 

Sharing Schemes: passive information-theoretic 

𝑡         players have no information about 𝑠 

𝑡 + 1 players can collaboratively reconstruct the secret 

Lagrange Interpolation:   𝑛 𝑝𝑜𝑖𝑛𝑡𝑠  (𝛼1, 𝑠1), … , (𝛼𝑛, 𝑠𝑛) 

𝑙𝑖(𝑥) =   ∏
𝑥 − 𝛼𝑗

𝛼𝑖 − 𝛼𝑗

𝑛

𝑗=1
𝑗≠𝑖

 , 𝑙𝑖(𝛼𝑗) =  {
  1 , 𝑖 = 𝑗
  0 , 𝑖 ≠ 𝑗

 

𝑔(𝑥) =  ∑ 𝑙𝑖(𝑥) ∗ 𝑠𝑖

𝑛

𝑖=1

 ,     𝑔𝑜𝑒𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑎𝑙𝑙 𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 

Sharing:    𝑝(𝑥) = 𝑠 + 𝑟1𝑥 + ⋯ + 𝑟𝑡𝑥𝑡  , 𝑝(0) = 𝑠 

    𝑠𝑖 = 𝑝(𝛼𝑖)     →   𝑖𝑡ℎ 𝑠ℎ𝑎𝑟𝑒 𝑓𝑜𝑟 𝑝𝑙𝑎𝑦𝑒𝑟 𝑃𝑖  

Can compute secret 𝑠 uniquely with any 𝑡 + 1 shares 

Addition & linear functions: compute share of 𝑐 = 𝑎 + 𝑏 

𝑐𝑖 = 𝑎𝑖 + 𝑏𝑖  , 𝑎𝑠 𝑆ℎ𝑎𝑚𝑖𝑟 𝑠ℎ𝑎𝑟𝑖𝑛𝑔𝑠 𝑎𝑟𝑒 𝑙𝑖𝑛𝑒𝑎𝑟 

Multiplication: compute share of 𝑐 = 𝑎 ∗ 𝑏 

1.  𝑑𝑖 = 𝑎𝑖 ∗ 𝑏𝑖  

2. Share 𝑑𝑖  𝑎𝑠 𝑑𝑖𝑗  𝑡𝑜 𝑃𝑗  

3. Compute share of 𝑐 

𝑐𝑖 =  ∑ 𝜔𝑗  𝑑𝑗𝑖

𝑛

𝑗=1

 , 𝜔𝑖 =  ∏
𝛼𝑘

𝛼𝑘 − 𝛼𝑗

𝑛

𝑘=1
𝑘≠𝑗
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3.4 Active protocol 

Divulging secret information: as adversary knows values of 

corrupted parties anyway, no further harm done 

Not sending values: corrupted party cannot send values 

Reconstruction: still possible, as 𝑛 − 𝑡 ≥ 𝑡 + 1 shares 

Not receiving share:  use public accusation 

Player not receiving a share publicly accuses dealer 

Dealer then broadcasts corresponding share; if he refuses, 

is disqualified and default value is assumed as input 

Not sending product share: either re-run everything, or 

reconstruct missing share or re-share everything 

Sending wrong values: if detected from honest player, 

react as if nothing had been sent 

Commit to every value a player knows at every given time 

Proof in zero-knowledge (e.g. with BCC Circuit SAT) that 

the computation of the new commitment was correct 

Homomorphic: can compute a commitment to the sum of 

two values with only their individual commitments known 

Used to calculate commitments to show that it is a valid 

commitment for result of a linear function for free (locally) 

CTP: send value & commitment to new party 

         → now “committed to it” in exactly the same way 

CMP: prove knowledge (& existence) of pre-image of (𝐴, 𝐶) 

           allows 𝑡 < 𝑛/2 , whereas IT needs 𝑡 < 𝑛/3 

Cryptographic security [ 𝒕 < 𝒏/𝟐 ] 

Petersen: type H → unconditional secrecy 

[𝑥, 𝛼] = 𝑔𝑥ℎ𝛼  , 𝐺 =  〈𝑔〉 = 〈ℎ〉, 𝑥, 𝛼 ∈  ℤ|𝐺| 

El Gamal: type B → unconditional correctness 

[𝑥, 𝛼] = (𝑔𝛼 , 𝛾𝑥ℎ𝛼) ,      𝐺 = 〈𝑔〉 = 〈ℎ〉 = 〈𝛾〉             

Information-theoretical security [ 𝒕 < 𝒏/𝟑 ] 

Commitment scheme which is perfectly hiding & binding 

by constructing a distributed scheme based on Shamir 

Sharing: use 2dim function against active adversary 

 

 

 
IT security requires 𝑡 < 𝑛/3 (more restrictive than crypto.) 

4. Broadcast 

Talk bilaterally, agree on what we heard; everyone hears 

the same & knows this is the case for all parties 

4.1 Broadcast 

Allows sender to distribute a value to all players with the 

guarantee that all honest player receive same value & 

agree on the value sent by the receiver 

Consistency: All honest players output same, agreement 

Termination: All honest players decide at some point 

Validity: If the sender is honest, honest players decide on 

the value sent by him as input 

4.2 Consensus 

Every player holds an input; in the end, honest players 

agree on a value & preserve so-called pre-agreement 

Pre-agreement: honest parties all have same input 

Consistency: All honest players output same, agreement 

Termination: All honest players decide at some point 

Persistency: If all honest players receive same input, keep 

For 𝑡 < 𝑛/2 , the two can be transformed into each other: 
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Consensus types  [ 𝒕 < 𝒏/𝟑 ] 

Weak consensus: If some honest player decides on an 

output 𝑦𝑖 ∈ {0,1}, all other players decide on 𝑦𝑗 ∈ {𝑦𝑖 , ꓕ} 

Graded consensus: Player decide how sure they are of 

their decision by giving a grade 𝑔𝑖 ∈ {0,1} 

𝑔𝑖 = 0 ∶ "not sure", 𝑔𝑖 = 1 ∶ "𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑" 

King consensus: If king is honest, achieve consensus 

Otherwise, we keep our pre-agreement and go on 

For consensus, just keep doing King consensus with all 

parties once as king; due to persistency, we will keep a 

correct result as soon as once as an honest party was king 

As broadcast is necessary for MPC, we can show that it’s 

not working for 𝑡 ≥ 𝑛/3 in information-theoretic setting 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Adversary structure 

 

 

Multiplication requires 𝑄2(𝑃, 𝑍) so that at least one party 

exists which knows 𝑎𝑝𝑏𝑞    ∀ 1 ≤ 𝑞, 𝑝 ≤ 𝑙 

 

 

 

 

 

 

Active Protocol 

Again, commit to everything for cryptographic security 

Do it information-theoretically: 

1. Consistency check: send value to other 𝑃𝑖 ∈  𝑍𝑞
̅̅ ̅ 

2. Accusation if not everyone is happy & broadcast 

 

 
 

Shared-Reconstruction requires 𝑄3(𝑃, 𝑍) 
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5. Algorithms & Protocols 

5.1 Interactive Proofs & ZK PoK 

 
 

 

 

 

 

 

 

 

 

 

 

Repeat sequentially →          ZK ( |𝐶| = {0,1}   small ) 

Repeat in parallel     →   not ZK ( |𝐶| = {0,1}𝑠 large ) 

Use trapdoors to get around this problem (don’t need to 

repeat, as poly-time simulator can open blob how it wants) 
 

 

 

 
 

Challenge space 𝐶 ∶   𝑐 ∈𝑅  {0, … , |𝐻| − 1} , |𝐻| = 2𝑞  

|𝐶| not polynomially bounded, chance to guess small 

ZK by restricting challenge space, e.g. 𝑐 ∈𝑅  {0, … , 100} 

 

 
 

 
 

 

NP-complete: can reduce any NP problem to this 

►   ZK, PoK    → ZK proof for all NP problems 
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5.2 Multi-Party Computation 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 Broadcast 

 

 

 

 

 

 

6. Papers 

6.1 Maurer: Unifying ZK PoK 

 

 

 

6.2 BCC: Minimum-Disclosure PoK 

 

 

Challenges: 

c = 0: show scrambled circuit 

c = 1: unblind rows of the truth table which are used 

           check that output = 1 (“valid proof”) 

 

 

6.3 Maurer: Secure MPC made simple 

 


