
1 
 

Advanced Computer Networks 

Andreas Biri, D-ITET                              09.07.17 

1. Networking 

Demands on the network: 

- Performance: latency, bandwidth 

- Reliability, availability, security 

- Operator: flexibility, manageability 

Latency only has small influence on big files 

- large impact on transfer time for small files 

- higher bandwidth, the more data is lost if the channel 

breaks down & buffers need to be increased drastically 

Transmission Control Protocol (TCP) 

- connection-oriented, stream-oriented (sequ. numbers) 

- acknowledgments & retransmissions 

- sliding window protocol & maximum message size (MMS) 

- slow start: start with window size 1 and increase 

Flow control: avoid overflow at receiver (sliding window) 

Congestion control: avoid overflow at routers (ACKs) 

Additive Increase / Multiplicative Decrease (AIMD) 

 

Bandwidth-Delay product: “data currently in flight” 

- data inside network, sent but not yet acknowledged 

TCP Incast 

In DC, request result in a scatter-gather traffic pattern 

→ all returning responses (e.g. from storage servers) are 

synchronized and return simultaneously, overloading the 

switch buffers and resulting in dropped packages 

→ packets will only get retransmitted after the 

Retransmission Timeout (RTO) of 200𝑚𝑠 has passed 

- especially influences systems which require all answers to 

continue its calculations (distributed storage, web search) 

Networking demands 

Flow-completion time: very important for the user (fast 

loading times), but mostly disregarded by operator 

- usually, tries to optimize maximal throughput, 

   link utilization & fairness (important to operator) 

Flow fairness: allocate same rates to all the flows 

- but: if I want more, I just add another simultaneous flow 

- long flows (over many routers) lead to more congestion,  

   but receive equal rate 

End-to-end argument: logic should be outside the network 

- if possible at end (e.g. top layer, end node), don’t put 

complexity inside the network if application specific 

- complexity of network is shared by everyone, even if we 

might not need it → only nodes that need should pay costs 

- mostly, full functionality can only be achieved if they are 

done over entire path, therefore don’t do it in between 

(“end-to-end check must be implemented anyway”) 

Fate-sharing principle: “Acceptable to lose state about 

entity, if at the same time entity itself is lost” 

- “If entity dies, what’s the point of knowing it’s state?” 

- example of end-to-end argument: store state at entities 

- Transport level sync on host can be lost if host disconnect 

- BGP: link failure leads to termination of announcements,  

            and therefore the state itself is lost 

Modularity & layering: each application should choose the 

setting best suited for its usage, no “general solution” 

2. Data center (DC) 

Scatter-gather traffic pattern 

One requests starts a cascade of multiple requests, each 

with a very short response deadline (10ms) 

Responses will be gathered and then returned to client 

- hundreds of memcache fetches per request 

Big Data analysis 

- Hadoop, Spark, Database joins with lot of internal traffic 

- 3 V’s : Volume, Variety, Velocity 

Measurements 

- gather header information at top-of-rack switch 

- Port mirroring: get entire packages 

- Log everything is not feasible, as too much 

   → use Bloom filter & hashing to compress data 

- Sampling: set criteria, e.g. “dump flow if above X” 

    → might miss problems 

- Replay scenario with logging ON 

    → for “Heisenbugs”, cannot figure them out this way 

→ concentrate on bugs & reproduce them to dig down 

What do we do if we have the data? 

- Neutral networks to learn & predict traffic for TE 

- Otherwise, not many applications 

Traffic characteristics 

DC: “machine to machine” traffic is several orders of 

magnitude larger than what goes out to the Internet 

Disaggregated DC: requires extremely large bandwidth 

- allows Hardware as a Service (HaaS) (“get what you need”) 

Depends very much on application, scale, network design 

- FB: lot of intra-Cluster traffic, cache intra-DC 

- Google: entirely non-local traffic 

                  →  better load-sharing & reliability 
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Implications for networking 

- Data center internal traffic is BIG 

- Tight deadlines for network I/O (only small delays allowed) 

   → if response takes too long, make another one 

- Congestion & TCP incast: original TCP doesn’t work well 

- Network shared by applications with different objectives 

   → SDN to adjust access rates, e.g. slow memory access 

   → Fragmentation: solve problem with virtual machines 

- centralized control at the flow level may be difficult 

   → distributed control with centralized thinking (SDN) 

DC size & location 

Can have mega DC & small ones at multiple sites 

- Mega: good for bulk data, easy management & costs 

- Small: reliability (no single-point-of-failure), 

               better latency, privacy 

- Hybrid: answer part at small ones, heavy-hitter externally 

High throughput networks 
- want low latency at the same time 

- support big data analysis / MapReduce tasks 

- ease virtual machine placement 

- freedom, easier management (don’t worry about load) 

Top-of-rack switch: rearrangeably non-blocking 

- allow full BW between all ports of the rack 

“Scaling up” vs. “scaling out” 

- scaling up: increase switch capacity, new hardware 

- scaling out: buy more switches, distribute load 

“Big switch” approach:    one piece of HW 

- easy setup & maintenance 

- very expensive, maybe not feasible 

- single point-of-failure 

- not well manageable or scalable 

Distributed network approach:   commodity HW 

- use known good network structures 

- existing small & cheap elements to build a large network 

But how to distribute over the network? 

- minimal latency, move only small data: keep rack local 

- large data-set, latency unimportant: use load distribution  

   to use entire network & spread the work 

Oversubscription: hosts have reduced connectivity to hosts 

connected on other switches because of BW limitations 

Hypercube: use cube of dimension 𝑑 

- 𝑑𝑒𝑔𝑟𝑒𝑒(𝑛𝑜𝑑𝑒) = 𝑑 

- # 𝑛𝑜𝑑𝑒𝑠             = 2𝑑  

- 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟           = 𝑑 

Fat-tree network 

- communication with any other host at full bandwidth 

  (rearrangeably non-blocking: path set exists for full BW) 

- leverage commodity hardware for cost-efficient solution 

- backward compatibility to existing protocols 

 

𝑘-ary fat-tree: 𝑘-port switches and 𝑘 pods  

Core:  (𝑘 2⁄ )2 , each connected to 𝑘/2 aggr. sw 

Aggregation:  𝑘2/2    , 𝑘/2 per pod 

Edge:   𝑘2/2    , each connected to 𝑘/2 hosts 

Hosts:   𝑘3/4     , each (𝑘 2⁄ )2 ECMP to any other 

Furthermore, need to spread load & simplify routing 

- e.g. specific IP address distribution: 

10. 𝑝𝑜𝑑𝑁𝑟. 𝑠𝑤𝑖𝑡𝑐ℎ𝑁𝑟. ℎ𝑜𝑠𝑡𝑁𝑟 

Equal-Cost Multipath (ECMP) 

- static load splitting among flows 

- currently, implementations limited to 8-16 paths 

Influence of path length 

- packet travelling a short path consumes less capacity 

# 𝑓𝑙𝑜𝑤𝑠 ∗ 𝑡ℎ𝑟𝑜𝑢𝑔𝑝𝑢𝑡 𝑝𝑒𝑟 𝑓𝑙𝑜𝑤 ∗ 𝑚𝑒𝑎𝑛 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ

≤ 𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝑝𝑒𝑟 𝑓𝑙𝑜𝑤 ≤
𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

# 𝑓𝑙𝑜𝑤𝑠 ∗ 𝑚𝑒𝑎𝑛 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ
 

Could not use best-known degree-diameter graph 

- lack of flexibility: need identical switches 

                                  no possibility to extend & increment 

Jellyfish 

Choose one random graph which connects top-of-rack 

switches with each other 

Achieves close to optimal performances (!) 

- on average, creates small mean path lengths 
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2.2 Data center routing 

Routing:        tells you possible paths 

Forwarding: tells you how to utilize those paths 

- exploit structure in the network 

- incorporate routing information in node names 

- store information in routing tables 

- store maps of the network on devices 

ARP: bad scalability (large tables, lots of traffic) 

Methods to avoid loops 

- spanning tree creation 

- hop count to stop packets after certain time 

- reverse path forwarding (RPF) check 

However, the spanning tree protocol (STP) doesn’t work: 

- results in low throughput after horizontal scaling 

- partition is easily possible (disconnected network) 

- reduce bisectional bandwidth (not full BW anymore) 

- throw away perfectly good links for nothing 

Transparent Interconnection of Lots of Links (TRILL) 

Link-state protocol between switches using all available 

links (store maps of the network at endpoints) 

- layer 2 (requires no setup or IP addresses) 

- source learning (“Where is unknown source from?”) 

- link-state protocol (each node first learns entire network) 

First switch encountering package encapsulates it and 

sends it to correct egress switch, which decapsulates again 

Shortest path routing: avoids loops (distance to 

destination always decreases) 

Source routing: complete decision made at entry point 

                             (predefined path from beginning) 

 

Virtual Layer 2 (VL2) 

When moving VMs around, want to keep IP same 

Clos network (different layers with different tasks) 

VL2 agent (on server): acts as hypervisor 

- intercepts outgoing packet 

- sends to RSM and encapsulates it with LA 

Name ≠ Location: 

Locator Address (LA):         “you can reach me here” 

Application Address (AA): “my actual IP” 

Network only knows locator address 

Hosts / Apps only know application address 

- Agent asks DS to translate so it can encapsulate 

 

 

Border Gateway Protocol (BGP) 

Prefix wants to be reachable 

- AS appends its ID & announces that it knows a path 

- other AS append their identifier and send it further 

Path can be chosen based on various notions 

- shortest path, cheapest path 

Why should one use BGP inside a DC? 

- Known to be unstable (oscillating paths) 

- Converges very slowly, not adaptive to changes 

But: it is well known & simple to use 

- FB: centralized AS advertisement → craft network, choose  

         parameters themselves & make it sophisticated 

Equal cost multi-path (ECMP) 

Multipath Routing: choose one out of many & distribute 

Possible solution: choose one path uniformly at random 

- packets take different path → requires packet reordering 

- may result in “packet loss” (stuck in buffer / queue) and  

   unnecessary re-transmissions 

Use hash functions on packet header 

- packets of same flow all take the same path 

- need a different hash function for each level 

  (else, each switch chooses same port nr for flow) 

- hash collisions will remain constant 

   (if two flows collide once, they will continue colliding) 

   → doesn’t guarantee load balancing 

Split traffic into flowlets (group packets) and send each 

flowlet on a separate path, separated by flowlet gap 

- gap too short: packet-level switching (reordering) 

          too long: flow takes long to complete 

 

CONGA: edge based monitoring 

- track all possible paths & choose path with best result 
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2.3 Multi-tenant DC 

- better economy of scale through increased utilization 

- improved reliability 

Agility: “Use any server for any service at any time” 

Traditionally: tenants in “silos” (give entire rack for it) 

- poor utilization & inability to expand 

- IP addresses locked to topological location 

  (VM migration hard, as addressing gets difficult) 

Key requirements: 

- Location independent addressing 

   (tenant’s IP addresses can be taken anywhere) 

- Performance uniformity 

  (VM receive same throughput regardless of placement;  

    e.g. not influenced by oversubscription) 

- Security → granular VM layer security 

  (Micro-segmentation: isolation at tenant granularity) 

Network virtualization 

Virtual layer 2 (VL2) 

 

Location independent addressing: Application address (AA) 

- separation of virtual & physical address 

Performance uniformity 

- Clos network: low oversubscription (uniform capacity) 

- ECMP provides load balancing (traffic-oblivious routing) 

- BUT: depends on TCP flows, tenants can still cheat 

Security: DS allow/deny connections by resolving 𝐴𝐴 → 𝐿𝐴 

“SDN”: logically centralized control & dynamic data paths 

 

Network virtualization platform (NVP) 

Want to expose a certain virtual network topology to any 

physical network by using hypervisors as middle layer 

 

Virtual device (switch, router) as table/map in software 

- tenants can specify devices which are implemented as 

SW tables, e.g. with OpenFlow switches 

Access control list (ACL): checks access permissions 

Requires full virtual network state at every host with a VM 

- use incremental state computation or multiple stages 

Slow processing, as many table lookups 

- do step-by-step lookup only for first packet for pipeline 

Tunneling interferes with TCP Segmentation Offload (TSO) 

- can add “fake” outer TCP headers to stop this 

2.4 TCP in data centers 

Have control over the entire network and can own version 

UDP at DC: no congestion resolution or retransmissions 

- lower latency than TCP 

- creates less state (uses less memory) per client than TCP 

 

Control is implemented at sender (end-to-end principle) 

- Congestion window (CW): start at 1 TCP segment 

- Receiver window (RW): set by Rx, maximal CW 

- Slow start: first double after each CW, then + 1 

- Timeout: reduce CW by half, then back to 1 

Partition/Aggregate: first divide request, then gather 

- MapReduce, web queries, social networks 

- Aggregators: web servers; Workers: memcached servers 

TCP Incast: lots of synchronized response to aggregators 

- switch will run out of buffers & drop packets 

- sender needs to wait for RTO and then retransmit 

- need all the answers to a request before preceding 

  → Incast probability increases with numbers of servers 

Fine-grained timeouts (against TCP Incast) 

In DC, we mostly have very low roundtrip times, wherefore 

a RTO of 200 − 400ms is orders of magnitudes too large 

1. Reduce 𝑅𝑇𝑂𝑚𝑖𝑛  to reduce incast influence 

2. No 𝑅𝑇𝑂𝑚𝑖𝑛 , microsecond TCP (high accuracy) 

Datacenter TCP (DCTCP) 

Mice: short messages (50KB-1MB), query, coordination 

Elephant: large flows (1MB-100MB), data update, backup 

Many flows very small, but most bytes in large flows 

- elephant flows overload switch buffers 

- mice flows particularly influenced, as longer completion 

Explicit Congestion Notification (ECN): mark packets in 

switches if they experience congestion 

- scale TCP window proportionally to number of packets 

with ECN bit set ( 8 10⁄ →  −40% ) 

Switch: mark packets if queue length above threshold 

Receiver: send ECN back with delayed ACKs 

Sender: maintain running average of parked packets 

𝑎 = (1 − 𝑔) ∗ 𝑎 + 𝑔 ∗ 𝐹, 𝐹: #𝑚𝑎𝑟𝑘𝑒𝑑 𝑖𝑛 𝑙𝑎𝑠𝑡 𝑤 

𝑤′ = (1 −
𝑎

2
)  𝑤 

Achieves full throughput with small footprint on switch 

(much smaller queues & no state in network) 

- a close to 0: “low congestion” 

- a close to 1: “high congestion” 
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Deadline-aware TCP 

Deadline driven delivery (𝑫𝟑) 

Allocate bandwidth on switches to flows according to their 

deadlines (requires state inside the network) 

Rate required to satisfy a flow deadline: 

𝑟 =
𝑠

𝑑
 , 𝒔: 𝑓𝑙𝑜𝑤 𝑠𝑖𝑧𝑒, 𝒅: 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 

1. Application sends desired rate to switches 

2. Switches allocate rates 𝛼 based on traffic load 

3. Sending rate for next RTT:    𝑟 = min(𝛼𝑖) 

If switch capacity is exhausted, allocate base rate to rest 

Flow quenching: terminate useless flow (expired, too large) 

𝐷3 can support much more flows with deadlines than TCP 

- exact size and timing of flow needs to be known 

- violates end-to-end principle (put state into the network) 

- need router support for this 

- greedy rate allocation leads to priority inversion 

Deadline-aware Datacenter TCP (𝑫𝟐𝑻𝑪𝑷) 

Integrate deadlines to DCTCP 

- per-flow state at end-hosts (not routers/switches) 

Deadline factor 𝑑: large → close deadline 

𝑑 = 𝑇𝑐/𝐷 

𝑇𝑐  : completion time needed with current window 

𝐷 : remaining time until deadline expires 

Penalty function: prefer flows with near deadline 

𝑝 = 𝑎𝑑  

𝑤 =    
𝑤 ∗ (1 −

𝑝
2

)          𝑝 > 0

𝑤 + 1                     𝑝 = 0
 

Multipath TCP 

Modern data centers provide many parallel paths 

( e.g. fat trees) 

Round-robin scheduling per packet 

- different RTT and MTU on the different paths 

- reordering may lead to multiple ACKs 

ECMP: hash network information to select outgoing link 

- preserves flow affinity 

- may not use the links uniformly (hash collisions) 

- ECMP doesn’t include the actual size of the flow 

- static → no information about current traffic 

Multipath TCP (MPTCP) 

Use many subflows per TCP flow, each on a random path 

- path with least congestion receives most traffic data 

- Sender asks Receiver whether he is MP capable 

  (in Internet: often, unknown options are removed) 

Subflow between different IPs or same with different port 

- ECMP hashes different flows to different paths 

- each subflow runs its own congestion control 

- protocol then handles traffic volume over all subflows 

- often, 4-5 subflows are sufficient 

3. Software-defined networking 

Networks are complicated: distributed and no clear paras 

- only “knows and dials” to adjust 

- low level of abstraction, lots of small variables 

Equipment is proprietary (black box for rest) 

- no innovation, cannot adapt to problems 

Traditional networking: code rules 

1. input rules (“for link A-D, to this…”) 

2. Inter-connected protocols 

- “Does my distributed algorithm work as intended?” 

Software-defined networks: add level of abstraction 

1. High-level coding / programm 

2. Automatically created rules by “Network OS” 

3. Low-level API: Logically centralized controller (“Assembly”) 

                               & Data plane API (“driver instructions”) 

Match + action tuple 

1. Match specific set of packets (header) 

2. Construct action which should be applied to it 

3. Install (match, action) in a specific switch 

Common primitives: 

- match packets, execute actions 

- topology discovery 

- monitoring 

Control plane: Logically centralized control view provided 

to multiple control apps as a database 

Data plane: only applies rules and forwards packets 

Opportunities: 

- Open data plane interface (standardized allows for  

   independence from vendor; can access device directly) 

- Centralized controller (solve distributed problem once) 

   → better (even optimal) solution, as overview 

- Software abstraction on controller (reuse algorithms) 

Challenges: 

- performance and stability 

- consistency in-between controllers & during updates 

- incremental updates in case of failure difficult 

- stateful middle boxes not yet implementable 

Use-cases: 

- cloud virtualization (separate virtual networks, flexibility) 

- inter-datacenter traffic engineering (high utilization) 

- Special-purpose deployment with less diverse hardware 
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4. Flow & contention control 

Try to prevent congestion before it even occurs 

- pro-active (TCP always reactive & therefore inefficient) 

- with increasing bandwidth, more data gets lost reactively 

Infiniband 

Low latency (RTT: 1-2us), high bandwidth (up to 100Gbit/s) 

Similar layers (all implemented in hardware): 

- physical 

- link: credit-based buffer management, virtual channels 

- routing & transport: (un)reliable, connection/datagram 

Key differences to TCP/IP: 

- link-level flow control 

- kernel bypass (write directly into memory) 

- new network semantics (not compatible) 

Ethernet 
not designed with built-in flow-control (unlike Infiniband) 

Priority Flow Control (PFC): “On/off” with priority classes 

- coarse-grained (stops entire class, not just one channel) 

- unfair: blocks all flows, even if no congestion there 

Quantized Congestion Notification (QCN): layer 2 

- add flow information on MAC packets & inform switches 

- “ECN on layer 2” → does not cross subnet boundaries 

4.1 Flow control 

Determines resource allocation to packets 

- channel bandwidth & buffer capacity (switch) 

- deliver efficiently and with low, predictable latency 

Flit: Flow control unIT 

- packets are divided into flits by hardware same headers 

- usually no extra headers (state saved in switches) 

- much smaller than entire packet (mostly MTU sized) 

 

Circuit switching: header reserves path for rest 

Bufferless: just forward it on another path 

- might be forced to drop & retransmit after timeout 

- no guarantee that packet will arrive on other path 

- valuable bandwidth used for packets which never arrive 

Buffered flow control 

decouple channel allocation in time 

Store-and forward: send entire packet further 

- channel & buffer allocation on a per-packet basis 

- receive full packets & forward after complete reception 

- high latency (need to wait for entire packet) 

Cut-through: send individual flits as soon as they arrive 

- channel & buffer allocation on a per-packet basis 

  (need to allocate entire packet buffer at next switch) 

- forward as soon as first (header) flit arrives 

- low latency, but blocks for whole packet transmission 

Wormhole: cut-through only on flits 

- buffers are allocated on a per-flit basis 

- low latency and efficient buffer usage 

   (only need one flit buffer & one flit of channel BW) 

Head-of-Line (HoL) blocking 

Flit at the front of queue cannot go on, blocks all the rest 

Virtual channel: multiple buffers per physical channel 

- multiple virtual channels per physical channel 

- separate buffer space prevents HoL blocking 

Buffer management: communicate available buffer size 

- credit-based: keep count of free buffers at downstream 

switchs & update if this changes 

- On/off: downstream switches allows/stops stream 

  (send “off” if buffer count below 𝐹𝑜𝑓𝑓 ≥ 𝑡𝑟𝑡 ∗ 𝑏 / 𝐿𝑓 ) 

 

4.1 Flow coordination 

Look at collective behaviour of flows by looking at jobs 

Coordination between individual network transfers of a job 

Problem: simply using more machines doesn’t work 

- more increase in communication time than decrease in  

   computational time (takes even longer with more CPUs) 

MapReduce: spread job, shuffle and aggregate again 

- Broadcast (Map): one-to-many, partition work 

- Shuffle (Reduce): many-to-many, aggregate results 

Orchestra 

manage data transfers in clusters 

- optimize at transfer level 

- transfer: flows transporting data between two job stages 

Coordination done through three control components: 

Cornet: cooperative broadcast 

- split data up into blocks & distribute them across nodes 

- receivers of blocks become part of sender set 

   (can choose sender in the same rack) 

- large blocks (4MB), no incentives required, topology aware 

Weighted shuffle scheduling: shuffle coordination 

- divide output into buckets 

- if buckets not equally shared over mappers, assign 

weights to each flow in a shuffle according to data 

(e.g. node 𝑠3 receives higher BW, as more data to transmit) 

 

Inter-transfer controller (ITC): global coordination 
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5. End-host optimization 
Networks became faster & latency decreased 

CPU speed remained the same, but we got more cores 

Network interface controllers (NIC) increasingly powerful 

→ can offload encryption, TCP processing etc. 

Key challenges: 

- Scaling: fast network & many cores require parallelization 

- Latency: dominated by software processing, 

                   multiplied because of multi-tier architectures 

- CPU load: packet processing & copy needs comp. power 

Descriptor rings 

1. OS gets buffer, fills it and hands it over to device 

2. Device sends data and frees buffer 

3. signals OS with interrupt & gives memory back 

If one of the parties has no more space: 

- Device: start discarding packets & signal in register 

- CPU: signal device to interrupt when again free buffer 

Receiver-Side Scaling (RSS) 

Use multiple Rx/Tx queues for a single NIC 

- one queue per core allows for fast processing 

NUMA: Non-uniform memory access 

( some memory access is faster than other, global memory) 

NUMA node: group of cores with very fast local memory 

- always want to process data with cores near to memory 

Rx: Incoming packet is hashed and added to one queue 

- each queue can then interrupt a corresponding core 

  (should be in same NUMA node for best performance) 

Transmit side: can use multiple transmit queues 

- each core has own Tx queue → no locks / synchronization 

- Performance isolation: NIC can schedule without CPU 

Scaling with cores & performance isolation 

Reduced CPU load (synchronization, load distribution) 

TCP Offload 

Move TCP/IP processing to the NIC 

- implement TCP state machine in hardware 

- Less host CPU cycles for processing & checksums 

- Fewer CPU interrupts & memory copies 

- can even offload expensive features s.a. encryption 

TCP Offload Engines (TOEs) 

- impose complex interfaces & management overhead 

- only useful for longer connections (only small gain, and  

  management overhead might overwhelm savings) 

- implemented in hardware, no bug fixes & changes 

  (OS doesn’t control it; no new protocols s.a. DCTCP) 

Nowadays, have many cores, which favours parallelization 

- network processing is hard to parallelize 

Applications: Storage-server access, cluster interconnection 

- very high bandwidth 

- low end-to-end latency 

- long connection durations & not too many 

Kernel bypass (no context switches) 

Currently, a large part of the delay come from the OS 

- data has to switch:   𝐾𝑒𝑟𝑛𝑒𝑙 𝑠𝑝𝑎𝑐𝑒 ↔ 𝑈𝑠𝑒𝑟 𝑠𝑝𝑎𝑐𝑒 

- system call overhead 

- multiple memory copies 

User-level networking: remove overhead 

- map individual queues directly to applications 

- allow applications to poll queues 

- requires hardware support to validate data & demultiplex 

   messages to the applications 

- Kernel only used during connection setup/teardown for  

   mapping queues to the applications & interrupts 

Use message queues (Send, Recv, Free) to get buffers, 

write into them and hand them over to the NIC 

Remote Direct Memory Access (RDMA) 

“One-sided operation”: only client actively involved 

- requires buffer advertisement prior to data exchange 

- need to check whether other party is allowed access 

- much faster for small message sizes 

RDMA Write: 

- “Where should data be taken from locally?” 

- “Where should it be placed remotely?” 

RDMA Read: 

- “Where should it be taken from remotely?” 

- “Where should it be placed locally?” 

Message passing also possible (“send”/”recv”) 

Implementations: vendors write own drivers & libs 

- Infiniband (Compaq, HP, IBM, Intel, Microsoft, Sun) 

- iWARP: RDMA over offloaded TCP/IP (custom NICs) 

- RoCE: send directly over Ethernet (no TCP anymore) 

Open Fabrics Enterprise Distribution (OFED) 

- Device driver: implement allocation of message queues 

                            on device 

- User driver: provide access to message queue from 

                         user space 

“verbs”: common application interface 

- register application memory (together with OS) 

- create a queue pair (QP; send + recv) 

- create a completion queue (CQ) 

  (element gets added after operation has completed) 

- Send/Receive/Read/Write data 

   Work-request element (WQE): buffer pointer + op type 

RDMA needs to do trade-off between polling & interrupts 

(latter larger overhead, as context switch) 

Doorbell batching: put multiple messages on the queues  

                                  before notifying the NIC  
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6. Network virtualization 

Multi-core: double number of cores every 18 months 

Hypervisor manages VM access to hardware 

- used for relaying interrupts & other commands 

 

x86: 4 CPU privilege levels (Ring 0 – 3) 

- privileged instructions: read or write I/O instructions 

Ring 3: Application uses syscall & trap into kernel 

Ring 0: OS drivers issue PCI commands 

             sensitive & hardware-related privileged instructions 

             (Kernel protects HW from “bad” programms) 

 

6.1 Full Device Emulation 

Guest OS unaware that it is being virtualized 

Hypervisor emulates device at the lowest level 

- privileged instructions from driver trapped by hypervisor 

Ring 1: Guest OS, communicates with traps in Ring 0 

- no changes to guest OS required (can use normal drivers) 

- very inefficient & complex (lots of calls & interrupts) 

Difficulty with historical x86 virtualization 

privileged instructions executed in Ring 3 may result in: 

- a fault 

- nothing 

- process issues trap indicating it wants code in Ring 0 

Last case is intended in virtualization; silently failing 

instructions make implementing virtualization difficult 

(need execution, but trap is not called and therefore 

instruction is simply ignored) 

Intel Virtualization Technology VT-x 

Duplicate all rings: root & non-root mode with 4 rings each 

Guest ≜ non-root mode, Host ≜ root mode 

Protected instructions executed in guest mode Ring 0 

generate traps that can be checked in host mode 

(guaranteed access, not possibility of “nothing” as in x86) 

 

KVM hypervisor: Kernel-based Virtual Machine 

QEMU: hardware simulation (API for emulated drivers) 

1. Start new guest OS → start QEMU process 

2. QEMU interacts with KVM: allocate memory, 

      start guest OS in guest mode Ring 0 (use HW support) 

3. I/O request from guest OS traps into KVM 

4. KVM forwards requests to QEMU for emulation 

 

6.2 Paravirtualization 

Guest OS aware that it is being virtualized 

→ runs special paravirtual device drivers 

Hypervisor cooperates with guest OS through interfaces: 

- Paravirtual driver: “Frontend driver” 

- Interfaces:               “Backend driver” 

- Better performance (knows it’s a VM & doesn’t trap  

   everything; can e.g. do batch requests) 

- Requires changes to the guest OS (special drivers) 

- requires hypervisor involvement, e.g. interrupt relaying 

VirtIO: I/O virtualization framework for Linux 

- split driver model: front-end & back-end drivers 

- APIs for front-end and back-end to communicate 

- lot of overhead because of switching kernel/user space 

 

Vhost: improved VirtIO backend   (see VM1 next page) 

- put VirtIO emulation code into the kernel 

   (no more in QEMU, which requires system calls) 
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6.3 Passthrough / Direct Assignment 

Directly assign NIC to VM (no more hypervisor) 

As VM has exclusive NIC, can use physical driver 

(no special driver required, can directly talk to hardware) 

 

- VM tied to specific NIC hardware 

   (makes VM migration more difficult, as HW related) 

- VM physical addresses for DMA are host virtual addresses 

  (might cause security issues, as belong to other VMs) 

- need a different NIC for each VM 

IOMMU: “Memory management unit (MMU) for DMA” 

- solves security issue: translate & validate DMA requests 

Virtual address: address in application of guest OS 

Physical address: hardware address seen by guest OS 

                                (physical address in the virtual machine) 

Machine address: real hardware address on physical device  

                                (as seen by hypervisor) 

Virtual Machine Monitor (VMM): hypervisor 

 

Single-Root-IO-Virtualization (SR-IOV): 

display physical device as multiple virtual ones 

Dynamically create new PCI devices 

- Physical function (PF): original device, full functionality 

- Virtual function (VF): extra device, limited functionality 

 

 

6.4 Inter-VM communication 

Internal communication 

know VMs are on same physical machine → use hypervisor 

- copy data into memory, then hand over 

- low latency (1 software copy) 

- uses host CPU cycles for networking (not wanted) 

- easy to upgrade (SW) & fully supportive for OpenFlow 

External communication 

can separate from host computer, but more latency 

- reduce CPU requirements, faster TCAMs on switch 

- can integrate into network management policies 

   (e.g. can use OpenFlow for policies between hosts) 

- External switch: simplifies configuration, as all switching 

controlled by the network 

- NIC: requires less latency than external switch 

7. Network functions virtualisation 

Middleboxes: change your data inside the network 

- Ad insertion, WAN accelerator, QoE monitor, firewall 

Violate the end-to-end & fate-sharing principle: e.g. proxy 

can die, but connection is still up and running 

Wasteful replication of functionality 

- do same function multiple times, but cannot aggregate, 

as middleboxes are treated as black-boxes 

 

Middleboxes are treated as black-boxes 

- monolithic, and therefore hard to understand & debug 

- long deployment timelines & no standards, vendor lock-in 

Virtualization: instead of non-commodity hardware from 

specific vendors, which require physical installation at site, 

use same standard servers, storage & switches and build 

application inside them → software middleboxes 

Middlebox consolidation: multiplexing of functionality can 

yield benefits, as peak loads could be distributed and 

therefore do not waste as much resources for worst-case 

Hyper app: set of middlebox functionality 

Network-wide coordination: can share load over boxes, 

each doing part of the function (e.g. filter part of IP range) 

Waypointing: send all traffic through particular point in net 

Software-defined Middleboxes: logically centralized 

controller and network functions as OpenBox apps 

- expensive to save session state for a long time 



10 
 

8. Wide-area networks (WAN) 

WAN: Wide-area LAN → inter-DC network 

8.1 WAN routing 

Datacenters on multiple locations: 

- data availability & latency (locality) 

- load balancing (high load where daytime) 

- local data laws (e.g. don’t want to route through US) 

Hybrid public-private operation 

- public: offload peak loads to extern assets 

- private: normal traffic over own backbone / resources 

Normal traffic: queuing delays ≫ transmission delays 

                           (delays mostly from being stuck in queue) 

WAN: mostly only transmission delay, not a lot of queuing 

- more point-to-point connections 

- higher degree of flexibility / manageability than Internet 

- dedicated connectivity between small set of end-points 

Multiprotocol Label switching (MPLS) 

- “If you have this label, go to this next node” 

- label corresponds to tunnel, tell packet where to forward 

- link-state protocol: setup tunnel, reserve BW & flood info 

- only ingress & egress node read the packet 

Problem with standard approach: 

- no global notion of management / centralized controller 

- complex (influence by artificially adjusting parameters) 

- inefficient (don’t separate between different traffic) 

   background:          analytics, not latency-sensitive 

   Non-background: “normal traffic”, latency-sensitive 

New technology should do traffic engineering (TE) 

- leverage service diversity (some data tolerates delay) 

- centralized TE using SDN 

- dynamic reallocation of bandwidth (optimization) 

- edge rate limiting (limit input rate, not inside network) 

B4 (Google) 

Use SDN for world-wide traffic engineering 

Quagga: enables fine software control over routing  

                (instead of HW) 

eBGP: external BGP in-between ASes 

iBGP: internal BGP for nodes inside the same AS 

BGP routing as “big red switch” 

Edge rate limiting: if experience increasing delay, just 

reduce producer rate → only need shallow buffers (cheap) 

Safeguard: backup controller who takes over if Master dies 

Aggregation: sort flows into groups → route them together 

Traffic engineering (TE) instead of just shortest path (OSPF) 

- centralized TE servers with global view 

- per QoS traffic engineering (TE) 

   (per app loss/latency/throughput considerations) 

- put TE flows into the flow tables of the switches with  

  higher priority than BGP flows (can switch if mistake) 

- large throughput increase requires less bandwidth 

Lessons learned from B4 

Controller produces rules faster than switch can process 

→ rules get queued and only applied with delay 

→ Flow rules cause Head-of-line blocking of packets 

     causes timeouts & new rules because of this (worsens) 

Solution: separate packet IO & flow request queues & 

prioritize packets (send only 1 rule every N packets) 

- if rule already superseded, drop it already in the queue 

Worst problem is unstable mastership: Slave receives no 

more heartbeats from master and claims ownership 

→ some switches follow different controllers, mastership 

switches often and causes dropped packages & instability 

Solution: make smaller domains & master election within 

domain, also removes single point of failure at each site 

SWAN (Microsoft) 

- Don’t change in one step, but gradually 

- Use free 10% slack on link to gradually switch flows 

  (if not used, give slack to background tasks for utilization) 

Other options 

- for fixed, continuous flows between clients, just start 

with a large congestion window to not ruin TE 

- control one end: DNS manipulation & load balancing 

- try controlling two ends (e.g. Google Chrome) for more  

   detailed and direct manipulation & traffic engineering 

8.2 WAN congestion control 

TCP needs to estimate the link capacity using ACKs: 

- prevent losses by resending dropped packages 

- help probing & setting the rate of transmission 

Problems with TCP: 

- Multiplicative decrease very drastic 

- only works for long flows 

- for losses not caused by congestion (e.g. physical layer),  

  don’t need to adjust the sending rate (but cannot know) 

- need to overshoot first to find correct rate (create drops) 

TCP uses a model of the network and creates rules for it 

- follow low-level, hard-wired mapping  𝑒𝑣𝑒𝑛𝑡 → 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 

- works well if assumptions are correct 

- cannot differentiate between multiple reasons for drops 

PCC (Performance-oriented congestion control) 

Black-box, online learning to do congestion control 

- try to vary around found solutions to improve rate 

Define utility function 𝑢 depending on traffic metrics 

- throughput, loss rate, latency 

1. Set intended utility function after black-box network 

2. Send at different rates and observe the utility function 

3. Adjust your rate to reach maximal utility 
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Do randomized controlled trials around found point 

- vary ± 𝜀 and choose better (or higher, if both the same)  

PCC is still not using cooperation between parties 

- for some utility function (e.g. throughput), we still 

converge to a fair, efficient Nash equilibrium 

- does not need AIMD, as looks at real performance 

   (in comparison to TCP, which deviates from convergence) 

PCC offers much more stable performance than TCP 

- good to use in CDN backbone, inter-datacenter networks 

- much better throughput for satellite & dedicated nets 

- very good for rapidly changing networks (but requires  

   convergence; might not work for fast changes) 

PCC (default) is not TCP friendly and starves its traffic 

- need to use different utility functions to provide fairness 

BBR: congestion-based congestion control 

Try to estimate better network model for no congestion 

(find bottleneck BW & round-trip propagation) 

Want to operate at bottleneck BW, but with minimal RTT 

→ right between app & bandwidth limited regime 

     (maximal BW, minimal RTT, buffers are starting to fill) 

However, TCP operates at BW and buffer limited border 

- there, buffers overflow and packets start dropping 

Data in flight = 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ ∗ 𝑑𝑒𝑙𝑎𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 
 

                           = 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ∗ 𝑅𝑇𝑇 

 

This point is optimal but unreachable 

- cannot measure both values simultaneously 

   (either RTT in app-limited regime, or BW in others) 

- RTT increase due to buffer filling or other factors? 

  (e.g. using different path) 

BBR synchronizes parties: buffers fill → stop rate increase 

(TCP also synchronizes: if buffers full, all reduce drastically) 

Operates with two target conditions: 

1. Full pipe:   𝑖𝑛 − 𝑓𝑙𝑖𝑔ℎ𝑡 = 𝑅𝑇𝑇𝑚𝑖𝑛 ∗ 𝐵𝑊𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘  

2. Rate balancing: buffer fill rate = emptying rate 

(Need second condition to spread data over time) 

 

Constantly probe 𝐵𝑊𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘  around [1, 1.25, 0.75] BW 

Occasionally, drop rate to see an empty queue again 

(also, at beginning drain queues again created in startup) 

- very stable even under losses 

- for multiple flows, results in fair share 

- Goodput can result in less goodput with large buffers 

9. Content Distribution Networks 

Users and their experience depend on latency 

Caching: Try to keep content near clients 

Static caching can however lead to various problems: 

- volume & diversity of content requires huge storage 

- dynamic content (personalized, often updated) 

- often encrypted 

CDN: allows quick and globally distributed access to data 

Located near their customers around the world at: 

- ISPs: low latency for clients + don’t have to pay own ISP  

   for transporting data, can deliver directly 

- Internet exchange points: good management & high BW 

Spread contents server 

Replicate entire services, not just caching, by interacting 

with backend servers 

- Increased reliability, as no single-point-of-failure 

- load balancing 

- lower latency & traffic costs over entire internet 

Network the sites and the origin  

- own cables & protocols with Google’s Quik 

Overlay routing: route over another node and not directly 

- internet routing cannot be to your advantage 

  (“Triangle inequality violation” direct way not fastest) 

- don’t want to relay traffic & pay twice to ISP for traffic 

- maintain map of RTT times & evaluate whether worth it 

Persistent connections: CDN keep open TCP connections 

- immediately large TCP window, no slow start 

- no initial handshake required → less latency 

- for SSL, even larger impact; but need to trust CDN node 
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Direct clients to appropriate servers 

1. Client asks server for website & receives html file 

2. Directly loads javascript, pictures etc. from CDN 

DNS manipulation to locally customize DNS resolution and 

allow user to access best server for his location 

- does not work if user doesn’t use local DNS resolver 

  (nowadays, additional arguments to solve this) 

Anycast addresses: multiple servers answer to same 

address & nearest (fastest BGP link) is chosen 

- announce same BGP prefix from multiple servers 

- no fine-grained control to choose which server 

CDN broker: send users to best CDN 

- app asks broker in real-time: “Which CDN is best now?” 

- broker can also chose small CDNs if they offer the best 

performance instead of always the same one, e.g. Akamai 

 

 

 

 

 

 

 

 

 

 

 

10. Various 

TCP Segmentation Offload (TSO) 

Network interface controller (NIC) takes load off CPU and 

slices payload into package sizes (MTUs) 

Valiant load balancing (VLB) 

Explicitly send traffic via a specific node for load-balancing 

TCP Fast retransmit 

After having received three duplicate ACKS (i.e. four ACKs 

for the same packet), the sender decides the packet got 

dropped and is not simply arriving in a different order and 

therefore retransmits the packet before the RTO is over 

Time-space diagram 

 

Open Shortest Path First (OSPF) 

Link-state routing inside a single Autonomous System (AS) 

- create entire network and calculate shortest paths 

- guarantee loop free connections 

- dynamic load balancing between equal-cost links 

 

 

 

 


